Category Archives: Copper Network

Can A Computer Connected to the PoE Switch?

PoE switches are commonly used in various networks. It can be low-cost unmanaged edge switches with a few ports or complex multi-port rack-mounted units with sophisticated management. When used in small or home networks, many people may wonder if it can be connected directly with a computer. This post will discuss this question in details.

What Are PoE and PoE Switch

Before the discussion, it is necessary to have a basic understand of what are PoE and PoE Switch:

PoE

As demands for connection from networking devices such as IP phones, IP cameras and access points increase, deployment complexity and cost rise as well. For less cable usage and investment, Power over Ethernet (PoE) technology is developed to provide both data connection and electrical power to devices through just one Cat5/Cat5e/Cat6 cable.

PoE Switch

PoE switch is a network switch that has Power over Ethernet injection built-in, which can transmit both power and data through an Cat5/Cat5e/Cat6 Ethernet cable at the same time. This kind of switch makes it easy for different sectors to deploy powered devices like VoIP phones, wireless access points and IP surveillance cameras in challenging places like ceilings, walls, outdoors, or wherever electrical outlets are not easily available.

poe switch connection

Can A Computer Connected Directly to the PoE Switch?

As shown below,PoE switch usually have the same RJ45 port as a computer. So many people will think they can be connected directly. But do not forget that PoE switch may also transmit electrical power through the RJ45 port and Cat5/Cat5e/Cat6 cable to the computer. Then can a computer be connected directly to the PoE switch? This is largely depend on the switch you have:

poe switch

If you have a PoE switch that conforms to 802.3af (the PoE standard) or 802.3at (the PoE Plus standard) and doesn’t claim to be “passive”, you can definitely connect your computer with it. This is because this kind of PoE switch has the function of PoE detection which is designed to avoid damage to non-PoE devices. In other words, when you connect other network devices to your PoE switch, it will communicate with the these devices whether they need power or not. Power is only injected if and when this negotiation is successful. Ethernet devices such as phones and access points are detected by the switch as accepting PoE and will receive the additional power feature from the PoE switch/port. Whereas a computer and other non-PoE devices will not be detected as having PoE capability and will just use the data communications features of the port.

computer connect to poe switch

However, there exists a class of PoE switches, usually referred to as “passive” or “always on”, which supply power without PoE detection. Why would anyone do this? Because this kind of PoE switch is significantly cheaper. Whether it damages your device depends on the voltage of the passive PoE switch and your devices. For a computer, it may be damaged for excessive voltage or current.

Conclusion

PoE switch is a dedicated device that contains multiple Ethernet ports to provide power and network communications. It is usually used in NVR/IP camera networks. For small or home networks, if you want to connect a computer to the PoE switch, make sure your switch follows the standard 802.3af or 802.3at PoE requirements. So can you connect a computer directly to your PoE switch?

10G Ethernet: 10GBASE-T or 10G SFP+?

10GBASE-T has been available as an add-in card in servers, switches and network interface cards (NICs) since 2008, and it has been widely adopted since 2012. It is highly praised for its advantages which include lower cost than 10G fiber, cost-efficiency of using existing MAC (Media Access Control), easier migration from 1GBASE-T to 10GBASE-T, and the ability to deliver PoE (Power over Ethernet). Does that mean we should all turn to use 10GBASE-T now? And what are the 10GBASE-T cable requirements? Every application differs, let’s see some specific cases in short-reach applications.

10G copper or fiber

Where Can 10GBASE-T Be Used?

When building a 10G network, the link can be either copper or fiber. If using 10GBASE-T cable, the places are required to be in the Data Center or Horizontal areas (in building, including wiring closet). But it is not suited for Vertical (riser links) applications within building, or campus & metro applications.

Cases for 10G Ethernet Connections

Case 1: Connecting a switch with only SFP+ ports to a switch with only 10GBASE-T ports.

10GBASE-T cable 1

When the distance of these two switches are less than 30 m, which is the max. link distance for 10GBASE-T copper SFP+ module, the desired connection for them can be made by using a 10GBASE-T module and a Cat6a cable. It’s the simplest solution for this case.

Case 2: Connecting two switches with only 10GBASE-T ports.

10GBASE-T cable 2

Connecting two switches with all 10GBASE-T ports are as simple as placing the plug into its mating socket. One Cat6a Ethernet cable is born for such a connection and that is why it is called the standard 10GBASE-T cable. By using a Cat6a cable for 10GBASE-T, it can reach up to 100m distance.

Case 3: Connecting two switches with only SFP+ ports.

10GBASE-T cable 3

There are three choices for connecting two complete SFP+ switches. For distances between 30 m to 400 m, it is recommended to get two 10GBASE-SR SFP+ modules for each switch and connect them with a OM3/4 LC duplex multimode fiber patch cable. The second is to use two 10GBASE-T SFP+ modules and Cat6a cable. If the link is as short as 7 m, it is suggested to use a low cost 10G SFP+ direct attach copper (DAC) cable.

Case 4: Connecting switches with both SFP+ and 10GBASE-T ports.

10GBASE-T cabling 4

When the two switches both have SFP+ and 10GBASE-T ports, you will be free to use methods from Case 1 to Case 3 above. But in my experience, it would be better to use the 10GBASE-T copper ports first, and save the SFP+ ports for possible future connections to an optical network for longer transmission distance.

Words in the End

10GBASE-T is taking its way to being more extensively used on network gears without a doubt, and cost for deploying 10GBASE-T equipment will be lowered with its wide spreading. Know the requirements for 10GBASE-T cabling is necessary for correctly choosing between 10GBASE-T or 10G SFP+ in practical usage. After all, cost-efficiency is very important in large-scale deployment.

Pre-terminated Copper Cables: Interconnect & Cross Connect Solution

Copper cables are regarded as the optimal solution for data center, which provides significant benefits in the respect of capital expenditures, operating expenditures, performance, and reliability. Pre-terminated copper cable assemblies, emerging as a new copper cabling option for network architectures such as MoR (Middle of Row) or EoR (End of Row), are recommended for interconnect and cross-connect applications in data center.

What Is Pre-terminated Copper Cable Assemblies ?

Pre-terminated copper cable assemblies consisting of pre-terminated copper trunks and copper patch cords (usually terminated with RJ45 connector), are ideal for data center applications which  require high-efficient deployment. Being factory pre-terminated and strictly tested, the pre-terminated copper cable assemblies simplify network installation and maintenance, saving users much time and energy. Moreover, they offer more flexibility to be disassembled and repurposed to accommodate MACs (moves, adds and changes), facilitating management when rapid network growth and migration required.

data-center-copper-cabling

Commonly used in point-to-point connections in data centers, pre-terminated copper trunk cables enable reliable connectivity between server and switch cabinets. While copper patch cords are used to connect panels to switches and servers. Moreover, intelligent patch cords are available to monitor port status.

Tips: various termination types are available for the pre-terminated trunks, such as jack-to-jack, jack-to-plug, plug-to-plug, cassette-to-cassette, and so on. So, your choice should base on the layout of the data center or telecommunications room, and the design philosophy employed.

How to Use Pre-terminated Copper Cable Assemblies?

Pre-terminated copper cable assemblies can be used in data center for backbone or intra-rack cable connectivity. This section illustrates the interconnect and cross-connect connectivity using pre-terminated copper cables in universal data center cabling applications.

Interconnect

For general data center cabling, copper trunk cables are used to make a permanent link between patch panels on each ends—one end is in a switch/network cabinet, and the other end is in a server/storage cabinet. And patch cords are usually used to interconnect the active equipment such as switches, servers, etc.

interconnect

Cross Connect

In cross-connect cabling configuration, an individual patching area (often including two or more adjacent patch panels) is usually added between the switch/network cabinet and server/storage cabinet. Thus, two copper trunk cables are used as two permanent links between them. One runs from the switch/network cabinet panel to cross-connect panel, and the other one runs from cross connect panel to the panel in the server/storage cabinet. Copper patch cords are used to interconnect the active equipment and patch panels at the switch/network cabinet, cross-connect cabinet, and server/storage cabinet.

cross-connect

FS.COM Pre-terminated Copper Cable Assemblies Solution

FS.COM offers a wide range of configurable pre-terminated copper cable assemblies and patch panels to meet the demand for faster deployment and guaranteed performance in data center copper cabling, help saving time and money.

Pre-terminated Copper Cable Assemblies Pre-terminated Copper Trunk Cable
Copper Patch Cords Cat5e Patch Cord
Cat6 Patch Cord
Ca6a Patch Cord
Cat7 Patch Cord
Modular Patch Panel Cat5e Patch Panels
Cat6 Patch Panels
Other Accessories Cat5e Connector/Plugs
Cat6 Connector/Plugs
Cat7 Keystone Jacks & Plugs
Conclusion

Pre-terminated copper cable assemblies offer an ideal solution for data center interconnection and cross connect applications. All the pre-terminated copper cables, patch panels and related accessories presented in the above chart are available in FS.COM. For more details, please visit www.fs.com for contact us directly via sales@fs.com.

How to Wire Cat5e Ethernet Cable

Copper Ethernet cables like Cat5, Cat5e and Cat6 are widely used in our network. Various Ethernet network cables are being invented. They can support different transmission distances and applications. Cat5e can support 1000base-T transmission up to 100 m, which meet the requirements of various applications in our home, office and data center. It has better performance than Cat5 and lower price than Cat6 making it a widely accepted types of Ethernet cable. This post introduces the details of how to wire the Cat5e cable.

cat5e wiring guide

Structure of Cat5e Cable

Cat5e uses four twisted pairs for transmission in each cable. The following picture shows the structure of Cat5e cable. The termination of Cat5e Ethernet cable should use RJ45 connectors. As there are four pairs of copper wires inside a length of Cat5e cable, the cable pinouts should be carefully managed. For Cat5e, there are two commonly used methods for termination: straight-through and Crossover.

cat5e structure

Cat5e Wiring Methods

Each pair of copper wires in the Cat5e has insulation with a specific color for easier identification. Wiring of Cat5e cable should follow the standard color code.

For straight-through wiring method, there are two standards recognized by ANSI, TIA and EIA: T568A and T568B. Both of them can be used. However, the T568B is considered better than T568A wiring standard. The following picture shows, wiring diagram of the two standards.

straight through cat5e

When you are doing the straight-through wiring, the cable pinout on the two ends of the Cat5e cable should be the same. However, for crossover wiring method, the RJ45 pinouts on each end of the Cat5e are different. The following picture shows how the eight wires are used for transmission in a crossover terminated Cat5e cable.

Crossover cat5e

Actually, if you want to connect a T568A device with T568B device, you can use this crossover wiring method. The following picture shows the pinouts on each end of the Cat5e cable.

Crossover cat5e

Processes to Wire Cat5e Cable

To terminate a Cat5e cable, you should prepare the cable. Here recommend a set of network installation tool kit which contains all you need to wire a category cable.

network installation tool kit

The following shows process of Ethernet cable termination:

cat5e wiring

Step 1, cut the cable to proper length and use wire stripper to remove the outer jacket.

Step 2, untwist wires and trim the excess part. Flatten the wires out as much as possible, because they need to be very straight for proper insertion into the connector.

Step 3, hold the cable ends and place the wires in orders from left to right according to T568A or T568B wire scheme.

Step 4, insert the wires into RJ45 connector. The wires must be sequenced in the same order of step 3.

Step 5, use crimping tool to squeeze the plug. This ensures the firm connection between the cable and the plug.

Step 6, repeat the process on the opposite end and test the terminated cable to make sure communications between cable ends and the network is correct.

Cat5e Solution

The Cat5e has great advantages in various applications and there are many related products, like Cat5e patch cable, Cat5e bulk cable, Cat5e patch panel provided in the market. Kindly contact sales@fs.com for more details about Cat5e products, if you are interested.

What Is Copper Trunk Cable and How to Use It?

High density cabling products and standard modular designs are playing important roles in today’s data centers and server rooms. This is also happening for copper cabling. During the process of copper cabling, traditionally, cable installers might choose to terminate category cables by themselves. However, this would lower the installation speed. In addition, the field-terminated copper cables like Cat5, Cat5a and Cat6 can cause faults if not being terminated correctly. As there might be hundreds or thousands of RJ45 connectors to be terminated with twisted copper cables, faults and material wastes are likely to occur. To decrease the installation time and fault risk, pre-terminated copper trunk cables are being introduced to data centers.

copper patch panel

What is Pre-Terminated Copper Trunk Cable?

The following picture shows the outlook of a commonly used pre-terminated copper trunk cable, a 6 jack to 6 jack Cat5e UTP PVC copper trunk. The copper trunk cable, in simple, is a bound of individual copper cables which are factory pre-terminated. Without additional termination, cable installers can direct install copper cables. As the cables are bounded together, there is no need to worry about cable mess.

6 jack to jack copper trunk cable

Various copper trunk cables are being provided for different requirements in practical applications. To select the proper copper trunk for your applications, there are three important factors to be considered. The first one is the copper cable type. Copper trunk cables using Cat5, Cat5e, Cat6 and Cat7 cables are all available in the market. The second factor is cable count. The most commonly used copper cables usually have 6 or 12 cables in one bound. Higher or lower cable counts are also available. The third one is the termination type of the breakout legs of the copper trunk cables. The breakout legs are usually terminated with RJ45 plugs or jacks, some copper trunk cables might leave on end or both ends unterminated for customers to DIY according to their practical applications. The following picture shows three most commonly used copper trunk cables: plug to plug copper trunk cable, jack to jack copper trunk cable and jack to plug copper trunk cable.

copper trunk cable

How to Use Copper Trunk Cables?

The using of copper trunk cables can effectively reduce the installation time and increase the work performance of the copper network. What’s more, they are able to provide easy-to-manage cabling environments if being properly used. How to make full used of pre-termianted copper trunk cables? During cabling, it is always the case that the backbone cable should be interconnected work cross-connected before it is connected to the target device. The following shows three situations which are commonly seen for copper cabling using copper trunk cables.

Two-connector Interconnect

In the first case (shown in the following picture), a 6 jack to 6 jack copper trunk cable is used to connect three servers to a switch. Copper patch panel is being used on each end of this connection. One is near the switch end and the other is near the server end. Copper patch cables are used to interconnect these devices.

copper cable interconnection
Three-connect Cross Connect

Cross connect is also very common in data center. The following picture shows a basic cabling structure of a three-connector cross connection. In this network, three RJ45 patch panel are being used. This structure is like the above mentioned two-connector interconnection. Just a cross connecting process is added at the switch end.

cross connection
Four-Connector Cross Connect

The following shows a more complex network structure, which is a commonly used four-connector cross connection. This type connection usually requires patch field which is usually cabinet. In this case, two copper trunk cables are working as permanent cables. Patch cords are used at these cabinet to connect the devices. Four patch panels are used. There is an individual cabinet for cross connection.

cross connection

Conclusion

With the help of pre-terminated copper trunk cables, the cabling of large data center or high density environment becomes easier and faster. It also simplifies cable management in data centers. Currently, there are a lot of vendors provided copper trunk cables. Some can also provide customized copper trunk cable according to your data center applications, which can reduce the waste of materials and help to build a more clean and neat cabling environment.