Category Archives: Uncategorized

Data Centers: Say Hello to White Box Switch

Today, nearly all mainstream organizations use traditional (integrated) switches from vendors like Cisco, HP, Arista and Juniper. However, hyperscale folks such as Google, Amazon and Facebook are taking the lead to use white box switch in the portion of their networks, operating the system in a different manner. So what is the magic behind that? Are these OTTs the only customers of white box switch? You may find some hints in this article.

White Box Switch

What Makes White Box Switch Special?
White box switches consists of generic and inexpensive hardware and a preload network operating system (NOS) that can be purchased and installed separately. Often the hardware and software come from different vendors. This is in contrast to a traditional switch that comes as one package including the hardware and the software. For example, when you buy a catalyst switch from Cisco, you are obliged to use Cisco IOS as its operating system. But with white box switch, you are allowed to buy hardware and software separately.

Except offering increased software flexibility/programmability and reduced vendor lock-in, white box switch enables users to have multiple choices on hardware, network operating system (NOS) and applications. The impact of which is profound when it comes to network orchestration, routing, automation, monitoring and network overlay.
White Box Switch NOS

What About the Target Market of White Box Switch?
White box switch is initially designed for data centers. Companies that operating mega data centers are especially prefer white box switch for at least two reasons: these companies generally demand for massive deployment of switches and the port density of each switch needs to be high. White boxes are cheaper while offering high-density ports, hence proven to be an optimal alternative. On the other hand, these large-scale companies also value the flexibility and openness of the switch platform, besides CAPEX savings. As an open platform to offer broader flexibility, white box switch free them from traditional L2/L3 protocols, enabling more possibilities to develop and support any SDN based networking.

So, are these large-scale OTTs the only target market for the white box switch? Definitely No!

Any small or medium-sized cloud based providers, or data center of service providers can consider deploy white box switches in data centers, concerning the cost savings and enhanced flexibilities compared with traditional switches. Also because of the familiar IT tools/ commands their technicians are used to. However, white box switches are not yet ready to offer all features and services that a service provider needs to offer, and not yet for deployment in non data center environments.

The Potential of White Box Switch
Based on an open platform, white box switch offers greater possibilities for innovation when compared with traditional networking gears. As the number of vendors that specialized in developing software began to soar, customers can choose from a range of software solutions with added functionality and reduced price.

White box switch becomes even popular in this age of SDN. In traditional switches, software and hardware are integrated into one package, which limits the network innovation greatly. SDN is here to decouple the software from hardware, helping speed shifts in networking. It resembles the standpoint of white box switching. Moreover, the advert of SDN also drives white box forward: when combined with SDN-centric designs, these deployments have resulted in dramatic improvements in automation, operational simplification, and faster innovation. These benefits are now being realized by enterprises of all sizes via commercially available SDN solutions.

Despite the fact that white box switches cannot be applied in non-data center environment for the time being, they are meeting their target market requirements successfully. The potential of white box switch cannot easily be underestimate, it is an ideal alternative that worth to be seriously considered at least for data center applications.

How to Build DWDM Network Over CWDM Network

Using CWDM MUX/DEMUX has been widely accepted as the most cost-effective and time-save method to increase the existing fiber optic network without adding optical fibers. However, a CWDM network can only support up to 18 different wavelengths. Is there any possibility to increase the capacity of the existing CWDM network? Hybrid CWDM and DWDM network is being introduced to combine the DWDM wavelengths with the existing CWDM wavelengths.

Combing DWDM With CWDM to Increase Network Capacity

As we know the CWDM wavelengths ranging from 1260nm-1625nm with space channel of 20nm actually cover all the range of DWDM wavelengths (ranging from 1470nm to 1625nm). However, DWDM wavelengths have much smaller channel spaces (0.4nm/0.8nm/1.6nm) and can provide larger bandwidth than that of the CWDM wavelengths. To combine DWDM with CWDM, the CWDM wavelengths that are near DWDM wavelengths can be used to transmit the DWDM wavelengths. However, not all these CWDM wavelengths are suggested. Generally, wavelengths of 1530nm and 1550nm are used to combine the CWDM and DWDM network together. Similarly, not all the DWDM wavelengths are suggested to be combined with CWDM network. The following picture shows DWDM wavelengths that are suggested to be combined with 1530nm and 1550nm.

CWDM DWDM hybrid wavelengths

How to connect CWDM With DWDM

To combine the DWDM wavelengths with CWDM wavelengths, both CWDM MUX/DEMUX and DWDM MUX/DEMUXs should be used. The following picture shows the connection methods for hybrid CWDM and DWDM. On both ends of the fiber link, a CWDM MUX/DEMUX and a DWDM MUX/DEMUX with corresponding wavelengths are deployed. Connect the line port of the DWDM MUX/DEMUX to the 1530nm/1550nm channel port of the CWDM MUX/DEMUX, the DWDM wavelengths can be added to the existing CWDM network.


Easier Operation and Cabling Solution for Hybrid CWDM and DWDM

In the CWDM and DWDM Hybrid network, the CWDM MUX/DEMUX and DWDM MUX/DEMUX play the most important roles. To offer better operation and cabling environment for these WDM MUX/DEMUX, FMU series products which are developed by FS.COM has been introduced. This series of products combines the MUX/DEMUX into half-U plug-in modules, and installed in 1U rack for better cable management and network operation as shown in the following picture.

FMU DWDM over CWDM solution

For CWDM and DWDM hybrid network, a FMU CWDM MUX/DEMUX and a DWDM half-U plug-in module can be installed together in a FMU 1U rack chassis. Thus, the two modules can be linked together easily. Meanwhile, with clear port identification, the management and operation of the fiber optic network would be easier.


The CWDM network can be added with DWDM wavelengths by the using of CWDM MUX/DEMUX and DWDM MUX/DEMUX which support corresponding wavelengths. The DWDM wavelengths that are 6.5nm around 1530nm and 1550nm are suggested to be used for CWDM and DWDM hybrid network. For better network operation and cabling, FMU series WDM solutions are suggested, which can provide easier and more flexible connections between CWDM MUX/DEMUX and DWDM MUX/DEMUX. Kindly contact for more details about DWDM over CWDM solution, if you are interested.

Source: How to Achieve DWDM Over CWDM

What 2016 Optical Interconnection Hardware Market Will Be Like?

2016 optical interconnection hardware market trend

2015 is a harvest year to many vendors in optical communication. According to the research “Optical Network Hardware Tracker” by IHS, the global optical network market has increased 3 percent to $ 12.5 billion in 2015. Even, optical interconnection hardware market, which usually has the most fierce competition, also increased in 2015 driven by the whole industry. Will this tendency be kept in 2016 for optical interconnection hardware market?

Needs Drive the Market

Firstly, the insight of optical interconnection hardware market in last year should be given. In 2015, optical growth is greatly driven by the increasing needs for higher Ethernet speed. This is because the application of advanced technologies like Cloud, Internet of Things, and virtual data center. In addition, the deployment of projects like FTTH (fiber to the home) and 4G network also promoted the optical interconnection hardware market. It is clear that these applications and projects will still be the largest driver of the optical interconnect market in 2016. The most possible trends of optical interconnection hardware market could be concluded by three keywords: high speed, compatible and high density.

High Speed—Breakout Year of 100G

High speed is one of the keywords of this industry, and for 2016, it still plays an important role. It is clearly proved by the market needs that higher Ethernet speed is the irresistible trend. Although not many data centers have taken the lead to migration to 40/100G, the 40G and 100G will be the key growth segment of the market in the next few years according to the research by IHS. As shown in the following picture, the 100G market is predicted to grow 262 percent from 2015 to 2016. Inspecting the 2015 market signals, 2016 might be the breakout year of 100G. Fiberstore as the leading provider in optical communication has already launched 100G interconnection products including 100G transceiver and DAC (direct attached cable).

IHS global network market prediction

Compatible—More Economical Choices for Customers

An important reason why so many data centers and enterprise networks slow down the 40/100G migration plan, is the cost. For example, almost every data center needs optical transceivers and DAC for interconnection. And these products must be compatible from the switches. However, the switch market has already been monopolized by large vendors like Cisco. And the original brand 100G optical transceivers and DACs are usually very expensive. Luckily, vendors like Fiberstore can provide full series optical transceivers with a lifetime warranty, fully compatible with networking kit. What’s more these products are much cheaper than the original brand ones and have the same performance. These third party transceivers offer customers more choices with lower prices, which is very likely to promote the optical interconnection market, especially, for 100G products.

High Density—Urgent Problem

High Ethernet speed means more devices and cables should be deployed in data center where the space is usually limited. Enlarging the size of a data center is a good method, however, it will cost a lot. Except the investment for more room, the invest for maintenance and cooling also cannot be ignored. Thus, increasing the port and cabling density would be the most economical and effective way for most data centers. In the past years, small form factor optics, high density network rack system and MPO products are applied to increase the cabling and port density. In 2016, Fiberstore innovatively provides high density LC and MPO patch cords with push-pull tabs which can increase the cabling density and flexibility effectively for optical interconnection.

Facing the Competition

High speed, compatible, and high density three most obvious trends of 2016 optical interconnection hardware market. With the driver of the market needs, the market is very likely to keep the tendency of 2015. Growth of 100G interconnection products is predicted to be a key growth segment in 2016. However, where there is market there is competition. Seen the market signals, more vendors will join the competition of optical interconnection hardware market. By providing fully tested products and the most reasonable price of optical interconnection products, Fiberstore is ready and willing to face the challenges and opportunities in 2016.

Drop Cable and Its Termination in FTTH

FTTH (fiber to the home) networks are installed in many areas covering indoor section, outdoor section, as well as the transition in between. To fulfill the cabling requirements from different areas, different types of fiber optic cables are well developed. Drop cable as an important part of FTTH network forms the final external link between the subscriber and the feeder cable. This blog post will focus on this special outdoor fiber optic cable.

The Basic of FTTH Drop Cable

Drop cables, as previously mentioned, are located on the subscriber end to connect the terminal of a distribution cable to a subscriber’s premises. They are typicality small diameter, low fiber count cables with limited unsupported span lengths, which can be installed aerially, underground or buried. As it is used in outdoor, drop cable shall have a minimum pull strength of 1335 Newtons according to the industry standard. Drop cables are available in many different types. The following part introduces three most commonly used drop cables divided according to the cable structure.

Flat Type Drop Cable, also known as flat drop cable, with a flat out-looking, usually consists of a polyethylene jacket, several fibers and two dielectric strength members to give high crush resistance. Drop cable usually contains one or two fibers, however, drop cable with fiber counts up to 12 or more is also available now. The following picture shows the cross section of a flat drop cable with 2 fibers.

flat drop cable

Figure-8 Aerial Drop Cable is self-supporting cable, with the cable fixed to a steel wire, designed for easy and economical aerial installation for outdoor applications. This type of drop cable is fixed to a steel wire as showed in the following picture. Typical fiber counts of figure-8 Drop Cable are 2 to 48. Tensile load is typically 6000 Newtons.

Figure-8 Aerial Drop Cable

Round Drop Cable usually contains a single bend-insensitive fiber buffered and surrounded by dielectric strength members and an outer jacket, which can provide durability and reliability in the drop segment of the network. The following shows the cross section of a round drop cable with one tight buffered optical fiber.

round drop cable

Drop Cable Connectivity Method: Splice or Connector?

It’s necessary to choose a right architecture for FTTH network from overall. However, drop cable as the final connection from the fiber optic network to customer premises also plays an important role. Thus, finding a flexible, efficient and economical drop cable connectivity method becomes a crucial part of broadband service. Whether to use a fiber optic connector, which can be easily mated and un-mated by hand or a splice, which is a permanent joint? The following will offer the answer and the solutions for your applications.

It is known that splice, which eliminates the possibility of the connection point becoming damaged or dirty with a permanent joint, has better optical performance than fiber optic connector. However, splice lack of operational flexibility compared with fiber optic connector. Fiber optic connector can provide an access point for networking testing which cannot be provided by splicing. Both methods have their own pros and cons.

Generally, splice is recommended for drop cables in the places where no future fiber rearrangement is necessary, like a greenfield, new construction application where the service provider can easily install all of the drop cables. Fiber optic connector is appropriate for applications which flexibility is required, like ONTs which have a connector interface.

Choosing the Right Splice Method

For splice, there are two methods, one is fusion splicing, the other is mechanical splicing. Fusion splicers have been proved to provide a high quality splice with low insertion loss and reflection. However, the initial capital expenditures, maintenance costs and slow installation speed of fusion splicing hinder its status as the preferred solution in many cases. Mechanical splicing are widely used in FTTH drop cable installation in countries, as a mechanical splice can be finished in the field by hand using simple hand tools and cheap mechanical splicer (showed in the following picture) within 2 minutes. It’s a commonly used method in many places, like China, Japan and Korea. However, in US mechanical splicing is not popular.

FTTH Drop Cable Mechanical Splicer

Choosing the Right Connector

For fiber optic connector, there are two types connector for drop cable connection. Field terminated connector, which contains fuse-on connector and mechanical connector, and pre-terminated drop cable, which is factory terminated with connector on the end of drop cable.

Fuse-on connector uses the same technology as fusion splicing to provide the high optical connection performance. However, it requires expensive equipment and highly trained technician, and more time like fusion splicing. Mechanical connector could be a replacement of fuse-on connector (showed in the following picture), if the conditions do not fit the mentioned ones. It could be a time-save and cost-save solution for drop cable termination.

fuse-on connector

If you have no limits in cost and want high performance termination in a time-save way, pre-terminated drop cable could be your choice. Many factories can provide you customized drop cables in various fiber types, fiber optic connector and lengths.


Customer demand for higher bandwidth will continue to drive the development of FTTH as well as its key component like drop cable. Choosing the right drop cable and drop cable termination method is as important as choosing the right network architecture in FTTH.


Migrating to 40/100G With OM3/OM4 Fiber

To meet the continuously increased requirements, data center 40/100G migration is underway. The infrastructure of data centers for the 40G/100G should meet the requirements like high speed, reliability, manageability and flexibility. To meet these requirements, product solutions and the infrastructure topology including cabling must be considered in unison. Cable deployment in the data center plays an important part. The cable used in data center must be selected to provide support for data rate applications not only of today but also the future. Today, two types of multimode fiber—OM3 and OM4 fibers (usually with aqua color)—have gradually become the media choice of data center during 40/100G migration. This article illustrates OM3/OM4 multimode fibers in 40/100G migration in details.

Data Center and Multimode Fibers

Multimode fiber is being widely used in data centers. You might ask why not single-mode fiber? The answer is cost. As is known to all, the price of single-mode fiber is generally more expensive than multimode fiber. In addition multimode fibers provide a significant value proposition when compared to single-mode fiber, as multimode fiber utilizes low cost 850 nm transceivers for serial and parallel transmission. If you had all money you wanted and you’d just run single-mode fiber which has all the bandwidth you need, then you can go plenty of distance. However, this perfect situation would cost a lot of money. Thus, most data center would choose multimode fiber. OM1, OM2, OM3 and OM4 are the most popular multimode fiber. But OM3 and OM4 are gradually taking place of OM1 and OM2 in data centers.


OM stands for optical multimode. OM3 and OM4 are both laser-optimized multimode fibers with 50/125 core, which are designed for use with 850nm VCSELS (vertical-cavity surface-emitting laser) and are developed to accommodate faster networks such as 10, 40 and 100 Gbps. Compared with OM1 (62.5/125 core) and OM2 (50/125 core), OM3 and OM4 can transport data at higher rate and longer distance. The following statistics (850 nm Ethernet Distance) shows the main differences between these four types multimode fibers, which can explain why OM3 and OM4 is more popular in data center now in some extent.

850 nm Ethernet Distance
Fiber Type 1G 10G 40/100G
OM1 300 m 36 m N/A
OM2 500 m 86 m N/A
OM3 1 km 300 m 100 m
OM4 1 km 550 m 150 m


Why Use OM3 and OM4 in 40/100G Migration

The Institute of Electrical and Electronics Engineers (IEEE) 802.3ba 40/100G Ethernet Standard was ratified in June 2010. The standard provides specific guidance for 40/100G transmission with multimode and single-mode fibers. OM3 and OM4 are the only multimode fibers included in the standard. The reason why OM3 and OM4 are applied in 40/100G migration is that they can meet the requirements for the migration cabling performance.

Bandwidth, total connector insertion loss and transmission distance are two three main factors should be considered when evaluation the performance needed for cabling infrastructure to meet the requirements for 40/100G. These factors can impact the cabling infrastructure’s ability to meet the standard’s distance of at least 100 meters over OM3 fiber and 150 meters over OM4 fiber. The following explains why OM3/OM4 are the chosen ones for 40/100G migration.

Get Higher Bandwidth With OM3/OM4

Bandwidth is the first reason why OM3 and OM4 are used for 40/100G migration. OM3 and OM4 are optimized for 850nm transmission and have a minimum 2000 MHz∙km and 4700 MHz∙km effective modal bandwidth (EMB). Comparing the OM1 and OM2 with a maximum 500 MHz∙km, advantages of OM3 and OM4 are obvious. With a connectivity solution using OM3 and OM4 fibers that have been measured using the minimum Effective Modal Bandwidth calculate technique, the optical infrastructure deployed in the data center will meet the performance criteria set forth by IEEE for bandwidth.

Get Longer Transmission Distance With OM3/OM4

The transmission distance of fiber optic cables will influence the data center cabling. The manageability and flexibility will be increased with fiber optic cables with longer transmission distance. OM3 fiber and OM4 fiber can support longer transmission distance compare with other traditional multimode fibers. Generally OM3 fibers can run 40/100 Gigabit at 100 meters and OM4 fibers can run 40/100 Gigabit at 150 meters. This high data rate and longer distance cannot be achieved by other traditional multimode fiber like OM1 and OM2. Employing OM3 fiber and OM4 in 40/100G migration is required.

Get Lower Insertion Loss With OM3/OM4

Insertion loss has always been an import factor that technically should consider during the data center cabling. This is because the total connector loss within a system channel impacts the ability to operate over the maximum supportable distance for a given data rate. As total connector loss increased, the supportable distance at that data rate decreases. According to the 40/100G standard, OM3 fiber is specified to a 100m distance with a maximum channel loss of 1.9dB, which includes a 1.5dB total connector loss budget. And OM4 fiber is specified to a 150m distance with a maximum channel loss of 1.5 dB, including a total connector loss budget of 1.0 dB. With low-loss OM3 and OM4 fiber, maximum flexibility can be achieved with the ability to introduce multiple connector mating into the connectivity link and longer supportable transmission distance can be reached.

OM3 or OM4?

Choosing OM3/OM4 is a wise and required choice for data center 40/100G migration. However, OM3 and OM4, which is better? Numerous factors can affect the choice. However, the applications and the total costs are always the main factors to consider to figure out whether OM3 or OM4 is needed.

First, the connectors and the termination of the connectors for OM3 and OM4 fibers are the same. OM3 is fully compatible with OM4. The difference is just in the construction of fiber cable, which makes OM4 cable has better attenuation and can operate higher bandwidth at a longer distance than OM3. Thus, the cost for OM4 fiber is higher than OM3. As 90 percent of all data centers have their runs under 100 meters, choosing OM3 comes down to a costing issue. However, looking in the future, as the demand increases, the cost will come down. Thus, OM4 might be the most viable product at some point soon.

No matter choosing OM3 or OM4, the migration is underway. With good performance like high data rate, long transmission distance and lower inserting loss, OM3/OM4 fiber is a must in data center migration to 40/100G.