Tag Archives: Gigabit Ethernet switch

Gigabit Ethernet Switch Selection Guide

In recent times, high-speed networks have become the pursuit for businesses and households across the globe, making daily life more comfortable and facilitating business growth. Gigabit switches play an important role in building high-speed networks and are widely used around the world. This article introduces the different types of 1G network switches, and how to choose the right Gigabit Ethernet switch, as well as FS switch recommendations.

What is a Gigabit Switch?

A gigabit switch is a type of Ethernet network switch that allows devices to be connected to a LAN at speeds of 1 Gbps or higher. Gigabit Ethernet replaced Fast Ethernet as a new network standard for increased speed. A Gigabit Ethernet switch is a higher version of a Fast Ethernet switch, meeting the demands of internet service providers for high speeds. 1G Ethernet switches are available in a variety of configurations, forming various types of switches to provide different services:

Unmanaged switches are designed to be plug-and-play with fixed configuration, providing basic connectivity for a small LAN or single user. These switches are normally used in small businesses where precise network control is not as crucial.

Managed switches are designed with greater control and advanced functionality to support the user experience, security, manageability, and scalability. They allow Ethernet devices to connect with each other, realizing the ability to configure, manage, and monitor local area network (LAN) traffic.

Smart switches feature limited management functions, allowing traffic self-management. They offer less scalability than other switches and can be used as infrastructure for smaller and less complex networks.

PoE switches support data transmission and power supply for several network devices using an existing Ethernet cable. They greatly simplify cabling and increase the flexibility and reach of connected systems.

FS Gigabit Switches: Suitable for Various Networking Requirements

With extensive industry experience and expertise, FS offers an exclusive line of 1G network switches with a wide range of port types and rich functional features, suitable for a variety of different applications. These switches offer versatile designs for better operational performance, helping to ensure a more secure experience and build a sustainable network for the future.

ModelsPortsPoE SupportedManaged UnmanagedFeatures Supported
S3900-48T6S-R48x 10/100/1000BASE-T RJ45 | 6x 10G SFP+non-PoEManagedQoS, IGMP Snooping, Link Aggregation, IPv6, L3 Static Routing RIP, OSPF
S3900-24T4S-R24x 10/100/1000BASE-T RJ45 | 4x 10G SFP+non-PoEManaged
S5810-28FS28x 1G SFP, 8x 1G RJ45/SFP Combo | 4x 1G/10G SFP+non-PoEManaged
S5810-48FS48x 1G SFP | 4x 1G/10G SFP+non-PoEManaged
S3150-8T2FP8x 10/100/1000BASE-T RJ45 | 2x 1G SFPPoE+Managed
S3400-24T4FP24x 10/100/1000BASE-T RJ45 | 4x 1G RJ45/SFP ComboPoE+Managed
S3260-16T4FP16x 10/100/1000BASE-T RJ45 | 2x 1G SFP, 2x 1G RJ45/SFP ComboPoE+Managed
IES3100-8TF-P8x 10/100/1000BASE-T RJ45 | 2x 100/1000/2500BASE-X SFPPoE+ManagedVLAN, QoS, LACP, IGMP, ACL, DHCP, Static Routing, MSTP

How to Select the Right Gigabit Switch for Your Network?

Ethernet switches play a significant role in enterprise network architecture and deserve serious selection. The following are the factors to consider when selecting 1G switches, which can provide you with some guidance.

Number of Ports You Need

First of all, determine how many network switch ports you need for your network. You need to not only calculate the number of connected devices in your home or business environment but also anticipate future connectivity needs. If it’s just for a home network that needs to connect three devices and a router, an 8 or 12-port Gigabit Ethernet switch is appropriate, due to the capability of future-proofing and connectivity for other devices provided. If you need a switch for a large network in a fast-growing enterprise, 24-port and 48-port managed switches are good choices, such as FS S3900-24T4S-R and FS S3900-48T6S-R.

Capability to Power Devices

Power over Ethernet (PoE) has become an important factor for users to consider when purchasing a network switch in recent years. This technology enables the capability to use existing Ethernet cables to power connected devices, such as VoIP phones, network surveillance cameras, or wireless access points. If you need this function, select a PoE Gigabit Ethernet switch. Make sure the power per port (in watts) and the total power budget of the PoE ports meet the needs of your network devices.Check FS S3400-24T4FP to see if it meets your needs.

Features

The features of network switches determine the functions and services they can offer. Unmanaged switches and smart switches lack network management and monitoring capabilities. Managed switches provide features, such as traffic management, troubleshooting, access controls, and monitoring. Some common features, including LACP, VLAN, QoS, IGMP Snooping, Link Aggregation, and OSPF, also need to be considered. FS 1G network switches are designed as managed switches with a rich set of features that encompass the above features.Other features, such as noise, may be overlooked. However, for homes or small offices, it is important to consider the noise generated by 1G network switches. FS S3150-8T2FP switch has a low-power and noiseless design, and supports secure desktop connectivity, suitable for deployments in working areas or home scenarios. In conclusion, before choosing a switch, double-check that it provides the features you need.

Applications

Special application scenarios will place additional requirements on Gigabit switches. For example, industrial scenarios pose higher requirements on the switch in terms of operating temperature, enclosure design, management, and durability. You need to check whether the Gigabit Ethernet switch can keep working well in the application scenario you want.If you need a switch for industrial scenarios, the FS IES3100-8TF-P can meet your needs to maintain stable operation in harsh environments, such as low temperatures and high vibration, and to enable easy network management.

The Closing Thought

To build a future-proof and reliable network, the selection of a switch needs to be done carefully, considering multiple aspects. I hope the above points will be helpful to you. Besides, FS offers a wide range of Gigabit network switches, one of which may meet your needs. check FS.com to know more.

How to Mount a Network Switch to a Rack?

A network switch has been recognized as one of the most important devices for today’s networking technology. It allows simultaneous transmission of multiple packets and partition a network more efficiently than bridges or routers. The rack mount switch can be installed in a standard 19-inch equipment rack or on a desktop or shelf. So how do you mount a network switch to a rack to establish network wiring connections? Here’s a step-by-step guide to teach you how to mount a network switch to a rack.

Preparations Before Mounting the Network Switch

Before rack mounting the switch, please pay attention to the following factors:

  • Location: The site should be at the center of all the devices you want to link and near a power outlet, so that it is accessible for installing, cabling and maintaining the devices in the rack.
  • Temperature: Since the temperature within a rack assembly may be higher than the ambient room temperature, check that the rack-environment temperature is within the specified operating temperature range (0 to 40 °C).
  • Mechanical Loading: Do not place any equipment on top of a rack-mounted unit.
  • Circuit Overloading: Be sure that the supply circuit to the rack assembly is not overloaded.
  • Grounding: The switch rack should be properly grounded.

How to Mount a Network Switch to a Rack?

Step1. Attaching the Brackets to the Switch

Attach the brackets to the network switch using the screws provided in the mounting accessory.

network switch to rack

Step2. Installing the Switch in the Rack

Mount the switch in the rack with the optional rack mount kit, usually using the rack-mounting screws. Be sure to secure the lower rack-mounting screws first to prevent the brackets being bent by the weight of the switch.

switch rack

Step3. Adding Other Switches into the Rack

If there is only one data switch to be installed in the rack, then you can make the connection to a power source now. If there are multiple switches to be mounted, you need to install the another switch on the top of the first one in the rack, and then attach the power cords.

Step4. Attaching the Power Cords

After you complete mounting all of the switches in the rack, it’s time to connect the switch rack to the power source. Remember to verify that you have the correct power supply (AC-input or DC-input and the correct wattage) for your configuration.

Caution: To prevent bodily injury when mounting or servicing the switches in a rack, you must take special precautions to ensure that the system remains stable. The following guidelines are provided to ensure your safety:

  • This network switch should be mounted at the bottom of the rack if it is the only unit in the rack.
  • When mounting the switch in a partially filled rack, load the rack from the bottom to the top with the heaviest component at the bottom of the rack.
  • If the rack is provided with stabilizing devices, install the stabilizers before mounting or servicing the switches in the rack.

Establishing Network Wiring Connections

After mounting your network switches to a rack, you can establish the network wiring connections according to your requirements now. If you’re using a Gigabit Ethernet switch, it can be connected to 10, 100 or 1000Mbps network interface cards in PCs and servers, as well as to other switches and hubs. It may also be connected to remote devices using optional SFP transceivers. No matter which type of network switches you are using, make sure that they are securely mounted in the rack and connected to the corresponding networking wiring systems.

MPLS vs Ethernet for WAN Connectivity

A WAN (Wide Area Network) is a communications network that spans geographically dispersed areas such as across cities, states or countries. A business may have a WAN comprised of cloud services, its headquarters and smaller branch offices, so the WAN is used to connect all sites together. The two most popular WAN connectivity options are MPLS ((Multiprotocol Label Switching) and Ethernet. To help subscribers analyze the differences between MPLS and Ethernet, this side-by-side MPLS vs Ethernet comparison provides a quick overview of the pros and cons of each WAN connectivity option.

MPLS vs Ethernet

What is MPLS?

MPLS is a protocol for efficient network traffic flow between multiple locations. MPLS operates similarly on a data switch and router, sitting between layers 2 and layer 3 network. MPLS uses labels for fast packets forwarding and routing within a network. In MPLS network, the MPLS switch (typically Gigabit Ethernet switch and 10GbE switch) transfers data by popping off its label and sending the packet to the next switch label in the sequence. The main benefits of MPLS network service are listed as below.

  • Reliability: MPLS is most widely used way to interconnect data centers with remote offices and branches to other branches since MPLS does require an entire block of IPs.
  • Service: With MPLS, there is a higher service level agreement that include delivery guarantees for speed and class of service (COS), unlike consumer broadband.
  • Labor Cost: MPLS allows businesses to leave WAN routing to the service provider and keep fewer WAN engineers on staff.

What is Ethernet?

Ethernet is a network protocol that controls how data is transmitted over a LAN (Local Area Network), such as those in a room, office, building or campus. As a point-to-point system, an Ethernet network uses Ethernet cables to connect PCs, switches or routers. Most desktop and laptop computers come with integrated an Ethernet card so that it’s easy to connect. Although the functionality of Ethernet is not as high-performing as that of an MPLS network, there are still some merits making it appealing.

  • Affordability: Although the scalability of Ethernet is smaller than that of MPLS, Ethernet is more affordable than MPLS, thus becoming the optimal choice for small and medium sized businesses.
  • Simplicity: Ethernet is best for connecting one data center to another, including using metro Ethernet to connect corporate sites dispersed geographically.
  • Professional Resources: Ethernet gives in-house WAN engineers control and responsibility over routing.
  • Disaster Recovery: Ethernet offers low latency and high output, which is ideal for disaster recovery.
  • Availability: Ethernet exchanges have made Ethernet WAN services available in more locations.

MPLS vs Ethernet for the WAN

Take a closer look at the subtle difference between MPLS vs Ethernet for the WAN connectivity from the chart below.

Parameter MPLS Ethernet
Scalability Scale to over thousands of sites Scale to up to hundreds of sites
Application Interconnect data centers with branch offices and branches to other branches Interconnect data centers
WAN routing Leave WAN routing to the service provider and keep fewer WAN engineers on staff Give WAN engineers control and responsibility over routing
WAN protocol behavior Handle any-to-any connectivity, including voice and video Offer low-latency and high-throughput, which is ideal for disaster recovery.
Quality of service (QoS) QoS options to enable preferential treatment of latency-sensitive traffic like VoIP Network engineers can bypass QoS complexity by hooking switches directly to Ethernet pipes
WAN management Complex Simple
Cost High Low

Summary

When weighing the pros and cons of MPLS vs Ethernet, make sure to examine your business needs and understand the resources available within the network, as well as what options exist in your geographic area. Most ISPs nowadays also offer an ISP-managed MPLS service, so they can manage the equipment, and basically get an Ethernet handoff to a switch, which is the so called “MPLS over Ethernet”. No matter which solution you would prefer, your network selection will influence the quality, reliability, service and cost of your WAN connectivity.

VPLS vs MPLS: What’s the Difference?

The Internet has undergone tremendous changes and broken the barriers from the impossibilities to the possibilities. To seamlessly and securely get access to the Internet or Web is what we’re seeking along the way. VPLS and MPLS are two competing technologies to direct network traffic, letting you have speedy data transfer and communication. What is a VPLS or MPLS network? What’s the difference between VPLS vs MPLS? We’re gonna to elaborate them one by one.

What Is MPLS?

MPLS (Multiprotocol Label Switching) is a type of communication that enables a service provider to provision cost effective and flexible “Virtual Private Networks” across a shared core network infrastructure. MPLS is used to send data and network traffic along the most efficient routes, which may be predetermined and are communicated using labels. Packets are carried on predetermined routes along point-to-point connections through label switch routers (LSRs) until they arrive at their destination. In MPLS network, the MPLS switch (eg. FS S5800-48F4S SFP switch) transfers data by popping off its label and sending the packet to the next switch label in the sequence. MPLS perfectly integrates the performance and traffic management capabilities of Layer 2 switching with the scalability and flexibility of Layer 3 routing.

MPLS Network

What Is VPLS?

VPLS (Virtual Private LAN Service) is a service that uses MPLS and VPN (Virtual Private Networking) to securely and seamlessly connect multiple LANs over the Internet, making them appear as if they were all on the same LAN. VPLS enables a service provider to extend a Layer 2 network across geographically dispersed sites using a shared core network infrastructure. VPLS works by creating a virtualized Ethernet switch at the provider’s edge to link remote sites. VPLS happens at Layer 2, and the carrier builds out the network, but the customer can do their own routing if they wish. This approach is ideal for corporations that have multiple data center footprints and office or remote locations that require low-latency connections between sites.

VPLS vs MPLS

VPLS vs MPLS: Factors to Consider When Choosing Them

When deciding over VPLS vs MPLS for connectivity between remote locations, there are multiple factors to consider. We’ll look into them one by one.

Switching Layer

One of the main benefits of VPLS over MPLS are the levels of security offered. As aforementioned, VPLS extend a Layer 2 network across geographically dispersed sites using a shared core network infrastructure. While MPLS perfectly integrates the performance and traffic management capabilities of Layer 2 switching with the scalability and flexibility of Layer 3 routing. VPLS does not share layer 3 routing tables with the service provider, while MPLS may do so, means that VPLS is generally the better solution for highly-sensitive data.

Network Size & Traffic

Generally, MPLS can deliver a wider type of network traffic than VPLS. VPLS is typically used for fewer locations that need very high speeds, very simple networks with high performance and high security. Thus, if you desire to connect entities such as data centers across the long-haul network backbone, VPLS is preferable as an Ethernet-based connection strategy. If a customer had hundreds of locations across the country who needs voice, data and video traffic to be carried to all locations, MPLS might make more sense because it is protocol-agnostic and can handle multiple types of traffic. MPLS may be an even clearer choice where large numbers of branches are involved.

Levels of Scalability

Another key difference between MPLS and VPLS is the inherent level of scalability. Due to the manner in which these two technologies interact with your network, MPLS is considered to be far more scalable. Using a backbone of MPLS for maximum network access and scalability, together with VPLS connections for more sensitive data often represents the best possible compromise, you would make the most of both protocols and substantially increase network efficiency.

Conclusion

Although MPLS and VPLS are different technologies, they are not mutually exclusive. Many businesses deploy both MPLS and VPLS protocols within their network in order to get the best of both worlds. FS provides gigabit ethernet switch and 10gbe switch which support both MPLS and VPLS. All these switches comes with rich L2/L3 business processing ability for core switching networks.

VPN vs VLAN: What’s the Difference?

As the popularity of the Internet has grown, many businesses are seeking for approaches to extend their own networks. First came Intranets, which are sites designed for use only by company employees. Nowadays, many of them are creating their own VPN (Virtual Private Network) or VLAN (Virtual Local Area Network) to accommodate the needs of remote employees and distant offices. What is a VPN and what is VLAN? This post will explain these two terms and the differences between VPN vs VLAN.

What Is a VPN?

A VPN is a virtual private network that utilizes a public network (usually the Internet) to connect remote sites or users together. A typical VPN network has a main local area network (LAN) at the corporate headquarters of a company, other LANs at remote offices or facilities, and individual users that connect from out in the field. Instead of using a dedicated leased line, a VPN uses “virtual” connections routed over a public or shared infrastructure such as the Internet or service provider backbone network. Therefore subscribers who are physically isolated from the main LAN can get access to the company’s private network and remotely.

VPN Applicable Network Scenario

Here is a typical example of using the VPN network. As illustrated in the figure below, Network “A” sites have established a VPN (depicted by the red lines) across the service provider’s backbone network, where Network “B” is completely unaware of it’s existence. Both Network “A” and Network “B” can harmoniously coexist on the same backbone infrastructure without interrupting each other.

VPN Network

What Is a VLAN–the Subcategory of VPN

A VLAN is a group of networking devices configured to communicate on one or more LANs as if they were attached to the same wire, but actually they are located on a number of different LAN segments. VLAN networks are based on logical instead of physical connections with great flexibility. A VLAN network defines broadcast domains in a Layer 2 network. A broadcast domain is the set of all devices performed to receive broadcast frames originating from any other device within the set. Broadcast domains are usually bounded by routers since routers do not forward broadcast frames.

VLAN Applicable Network Scenario

As shown in the figure below, Layer 2 network switches are used to create multiple broadcast domains based on the configuration of these switches. Each broadcast domain is just like a distinct virtual bridge within a switch. By adding a Layer 3 router, it possible to send traffic between VLANs while still containing broadcast traffic within VLAN boundaries. The router uses IP subnets to deliver traffic between VLANs. Each VLAN has a distinct IP subnet, and there is a one-to-one correspondence of VLAN and IP subnet boundaries.

VLAN Network

VPN vs VLAN: How They Differ From Each Other?

VPN vs VLAN, they are two different concepts but related to each other. A VLAN is a subcategory of VPN, but they are designed for different hierarchies. VPN constructs range from Layer 1 to Layer 3, while VLAN is purely a layer 2 construct. A VLAN is used to group multiple computers that are not usually within the same geographical areas into the same broadcast domain. A VLAN can also segregate computers in a larger local network into smaller networks for each office or department and shielding the data so that they do not act as if they are on same network even if they are in the same switch. However, a VPN is more often related to remote access to a company’s network resources. It’s a method of creating a smaller sub network on top of an existing bigger network compared with VLAN.

Summary

No matter which one you choose over VPN vs VLAN, the foremost thing is to get reliable network switches or routers implemented in VPN or VLAN networks. FS can always fulfill your requirements by offering gigabit ethernet switch, 10gbe switch, 40gbe switches, as well as new gigabit VPN routers. They’re with powerful data-handling capacity and high compatibility for applications in data centers and enterprises.