Tag Archives: SFP+ module

How to Select 10G SFP+ Modules for Cisco Switches?

10G fiber optic network is being widespread in today’s telecommunication network. A lot of 10G fiber optic devices like switches are being uses, among which Cisco devices are the most commonly used according to statistics. If you choose a Cisco switch, Cisco original brand or Cisco compatible modules like SFP/SFP+ might be needed for transferring between optical signals and electrical signals. This post will offer details about how to select the proper 10G SFP+ module for Cisco switches.cisco compatible modules

Understand 10G IEEE Standards and How Cisco Name Its Modules

10G fiber optic network is mature now, and there is a wide selection of 10G IEEE standards for different 10G networking applications and environments. Before you buy 10G SFP+ modules for your Cisco switches, you should firstly get to know these 10G standards.

10G IEEE Standards

IEEE has defined 10G standards for different transmission distance and transmission media. For instance, there are 10GBASE-SR SFP+ for short distance up to 300 meters over OM3 multimode optical fiber and 10GBASE-LR for long distance up to 10 kilometers over single-mode fiber. There are also standards for 10G transmission over copper cables like 10GBASE-CR and 10GBASE-T. The following table listed the details for the most commonly used 10G standards.

10G IEEE Standards Description
10GBASE-SR Support 10G transmission over wavelength of 850nm via multimode fiber
in short distances: OM3 (up to 300m) and OM4 (up to 400m).
10GBASE-LR Support 10G transmission over single-mode fiber up to 10km
over wavelength of 1310nm.
10GBASE-LRM Support 10G transmission over standard multimode fiber up to 200m
over wavelength of 1310nm.
10GBASE-ER Operate over 1550nm wavelength and support transmission distance up
to 40km over single-mode fiber. Attenuation is required for transmission
distance shorter than 20km.
10GBASE-ZR Support 10G transmission over 1550nm single-mode fiber optic up to 80km.
For short links, attenuation is required to ensure transmission quality.
10GBASE-BX Support duplex 10G transmission over a single single-mode fiber using
two different wavelengths up to 80km.
10G CWDM/DWDM Support 10G transmission over 1550nm single-mode fiber optic up to 80km.
For short links, attenuation is required to ensure transmission quality.
10GBASE-CR Support 10G transmission over Twinax copper cable in very short distance
and offer a cost-effective way for connections within racks.

Product Name of Cisco 10G SFP+ Modules

The naming system of Cisco 10G SFP+ modules is closely related to the IEEE standards. Here I listed several examples for Cisco SFP+ module to better illustrate how Cisco names its 10G SFP+ modules.

10G IEEE Standards Cisco 10G Modules Product Number Example
10GBASE-SR Cisco SFP-10G-SR
10GBASE-LR Cisco SFP-10G-LR
10GBASE-LRM Cisco SFP-10G-LRM
10GBASE-ER Cisco SFP-10G-ER
10GBASE-ZR Cisco SFP-10G-ZR
10GBASE-BX Cisco SFP-10G-BXD-I & SFP-10G-BXU-I; Cisco SFP-10G-BX40D-I & SFP-10G-BX40U-I
10G CWDM/DWDM Cisco CWDM-SFP10G-1470; Cisco DWDM-SFP10G-61.41
10GBASE-CR Cisco SFP-H10GB-CU1M; Cisco SFP-H10GB-ACU7M

For common 10G SFP+ modules, Cisco uses the key words of the standards to name the responding modules. For special modules, Cisco has built another naming system.

Cisco BiDi SFP+

For a pair of BiDi SFP+ modules, letter “D” and “U” is used to the two modules that are used together on each end of the fiber optic link. For instance, SFP-10G-BXD-I & SFP-10G-BXU-I is a pair of BiDi Modules that can support transmission distance up to 10km. Additional numbers are added to mark the transmission distance of the BiDi modules. SFP-10G-BX40D-I & SFP-10G-BX40U-I is a pair of BiDi SFP+ modules that can support transmission distance up to 40km.

For CWDM 10G SFP+ and DWDM SFP+, the wavelength is added in the part number. For instance, CWDM-SFP10G-1470 is the part number of a CWDM SFP+ that is operated at wavelength of 1470nm. If you want a CWDM SFP+ operating over 1550nm, then the product number of this CWDM module should be CWDM-SFP10G-1550. As all the DWDM SFP+ modules are operated over wavelengths around 1500nm, in the product number of Cisco DWDM SFP+ modules, the first two number 1 and 5 is eliminated. For example, DWDM-SFP10G-61.41 stands for a DWDM SFP+ transceiver with operating wavelength of 1561.41nm.

10G SFP+ DAC

For modules like SFP+ direct attach cable (SFP+ DAC) and SFP+ active optical cable (SFP+ AOC) which contains a length of cables, Cisco combines the characters of IEEE standard and number to name its modules. Cisco SFP-H10GB-CU1M stands for 10G SFP+ direct attach copper cable that is one-meter long. Cisco SFP-10G-AOC2M is a 2-meter long 10G SFP+ active optical cable.

Do You Really Need Cisco Original Brand SFP+ Module?

Except IEEE standard and transmission distance, to select the proper 10G SFP+ module should also considerate several other factors like compatibility and costs.

Although Cisco has a wide selection of switches and 10G SFP+ modules, but not every SFP+ modules can work well on every Cisco switches SFP+ port. Before selecting the SFP+ msodule for your Cisco switch, you must make sure this SFP+ is compatible with your switch.

The second important factor is the costs for the SFP+ modules. Why? SFP+ module is just a small part of the whole fiber optic network, but the use amount of SFP+ module is very large. Cisco Original brand SFP+ modules are usually expensive. Thus, select cost-effective modules are necessary. Actually, Cisco Original brand SFP+ module is not the only choice. There are also many third party modules that it compatible with Cisco switches. Generally, prices of third party fiber optic transceivers are much lower than the original brand ones.

SFP+ module

How to Buy Cisco 10G SFP+ Module?

If you have plenty of money, you can directly order the modules from Cisco. However, if you are going to select the third party modules for a cost-effective solution, then the quality and compatibility would be very important. FS.COM is a provider offers a full range of Cisco compatible modules. All its modules are fully tested in original brand switches to ensure the compatibility and quality. What’s more, FS.COM uses the same naming system as Cisco for its Cisco compatible modules and generic fiber optic modules. A list is also offered in the product page of each fiber optic modules showing the compatible switches and platforms. Customer can use the Cisco product number to search Cisco Compatible and generic modules in FS.COM directly.

Related Article:

Cisco SFP-10G-SR: All You Need to Know

A Comprehensively Understanding of Cisco 10GBASE SFP+ Modules

SFP Telecom Basis

The SFP is the more compact transceiver module used in optical communications. It interfaces a network equipment moter board to a fiber-optic or unshielded twisted pair networking cable.This is probably the most diffused transceiver format available with a variety of different transmitter and receiver types, allowing users to select the appropriate transceiver for each link to provide the required optical reach over the available optical fiber(e.g., multimode fiber or single-mode fiber). In this article, SFP telecom knowledge will be provided.

                   Technology for SFP telecommunications:integrated optics and microelectronics.

          sfp telecom

            FIGURE 1  Pictorial representation and dimensions of a pluggable SFP Transceiver.

A drawing of and SFP Transceiver is presented in Figure 1, where the particular connector for the input and output fibers that, with different dimensions, is present in all the transceivers is evidenced. The way in which the SFP Transceivers are hosted on the motherboard using a suitable cage allowing a hot plug is shown in Figure 1, where both the empty cages on the front of a system card and the cages with plugged SFPs are shown.

SFP module is commonly available in four different categories: 850nm (SX), 1310nm (LX), 1550nm (ZX), and WDM, both DWDM and CWDM. SFP Transceivers are also available with a “copper” cable interface, allowing a host device designed primarily for optical fiber communications to also communicate over unshielded twisted pair net-working cable.
Commercially available transceivers have a capability up to 2.5 Gbit/s for transmission applications; moreover, a version of the standard with a bit rate of 10 Gbit/s exists, but it can be used only to connect nearby equipment, and is very useful to spare space and power consumption as inter face in the client cards of line equipments.Modern optical SFP Transceivers support digital optical monitoring functions accord-ing to the industry standard SFF-8472 MSA. This feature gives the end user the ability to monitor real -time parameters of the SFP, such as optical output power, optical input power, temperature, laser bias current, and transceiver supply voltage. SFP transceivers are designed to support SONET, Gigabit Ethernet, Fiber Channel, and other communications standards.

                                       sfp telecom   

                                    FIGURE 2   Hosting of SFP Transceivers into a system card.

                     sfp telecom

        FIGURE 3   Characteristics of Practical SFP Pluggable Transceivers for Different Applications

The standard is expanding to SFP+, which will be able to support data rates up to 10.0 Gbit/s(that will include the data rates for 8 Gbit Fiber Channel, and 10 GbE). possible per-formances of different realistic SFP Transceivers are reported in FIGURE 3.

XFP Transceivers for Telecommunications

The MSA for the XFP transceiver was born after the start of the success of the SFP format to provide a transceiver with a form factor suitable to host 10Gbit/s transmission compo-nents, but sufficiently compact to reproduce the advantages of the SFP.
In a short time it was evident that the XFP industrial standard was really tailored according to the system needs and at present this is the only type of transceiver used in thelecom equipments whose evolution is targeted to high-performance interfaces at 10 Gbit/s.
At the beginning the target was a simple short-reach or medium-reach interface, but the evolution of the lasers and the Mach-Zehnder modulators integrated on InP platform is driving the development of a new generation of high-performance XFPs with tunable long-reach interfaces.
Thus, at present, there are a large number of different XFP transceivers designed for telecommunications: from the transceivers with gray short-reach interfaces for application in the client ports of optical equipments to short-, intermediate-, and long-reach DWDM interfaces, both with fixed and tunable lasers, to CWDM10 Gbit/s transceivers.

                          Technology for Telecommunications:Integrated Optics and Microelectronics

                          XFP telecom                                  FIGURE 4   Pictorial representation and dimensions of a pluggable XFP transceiver.

The drawing of an XFP transceiver is presented in Figure 4 with the indication of the transceiver main dimensions.XFP transceivers are slightly greater than SFPs, but they are by far the smaller 10 Gbit/s interfaces suitable for DWDM transmission, and even if the transmission performances attainable with MSA 300 PIN are better,seceral optical systems, even when requiring long-haul transmission, adopt XFPs. As a matter of fact, the advantages in terms of space, power consumption, and failure management often over-commpensate a certain transmission penalty.

The way an XFP is hosted on the motherboard is shown in Figure 5. As in the case of the SFP there is asuitable cage that has to be mounted on the motherboard in order to allow the XFP hot plug. Since high-performance XFPs have a high ratio between power consumption and area of contact with the cooling air flux, a heat sink is generally needed to increase the heat exchange area. This is mounted directly on the cage to minimize the thermal resistance.(Related products in: xfp-10gzr-oc192lr)

                      XFP telecom

                                 FIGURE 5   Hosting of XFP transceivers into a system card.

                      XFP telecom                        
                     FIGURE 6   Functional scheme of a DWDM 10 Gbit/s XFP transceiver.

The functional diagram of a high-performance XFP is shown in Figure 6. From the figure it results that the module is controlled via an inter face, the same that is used also to control MSA 300 modules. This clearly declares the fact that an XFP is not conceived as a low-performance module; on the contrary, it is equipped with a sufficiently powerful control interface to allow even the most complex features to be configured and managed. Hope the knowledge of SFP telecom and XFP telecom

High Density Fiber Patch Cables For Using In Data Center

Data center fiber optical transmission system requirements on the bandwidth shows high growth trend, while the use of a new generation of fiber optic and fiber optical module can continue to explore the potential of optical network bandwidth. Since multi-mode fiber has lower overall cost of active and passive, prompting multimode fiber applications have an absolute advantage in the data center. The launch of OM4 new category EIA/TIA492AAAD multimode fiber standard, providing a better transmission way for multi-mode fiber widely used in the future. Multimode fiber from OM1 to OM2, from OM3 cable use VCSEL laser optimization technique to OM4 cable, the bandwidth is progressively enhanced, promoted by a large growth requirements of online media and application in the cloud computing environment, this module is the ideal communication solution for data center, server farms, network switches, telecom switching centers and many other needs high-speed data transmission embedded applications, the system applications include data aggregation, backplane communications, proprietary protocol data transmission and other high-density / high-bandwidth applications.

In the 40G/100G state port device such as QSFP will be directly connected to the MTP/MPO connector, regardless if the fiber channel is connected by several fiber optic cables, or what type of connection of the fiber connected. 40G/100G of equipment and equipment ultimately channel connection need to form a special model, so that the equipment transmitting end and the receiving end of the channel correspond to each other.

MPO / MTP high density fiber pre connection system currently mainly used in three areas: high-density data center environment applications, fiber-to-building applications, inside connection applications between optical splitter, 40G, 100G QSFP SFP+ and other fiber optical transceiver devices. There are a series of high-density parallel optical connectivity products adaptable to modern data center fiber transmission, which are 16��8 OM3/OM4 MPO bundle, MPO Loopback and QSFP Jumper.

MPO/MTP Fiber Cable is offered for various applications for all networking and device needs like 100 Gigabit modules. It uses a high-density multi-fiber connector system built around precision molded MT ferrule. MPO/MTP fiber cable is available in UPC and APC finishes, and support both multimode and single mode applications. Work with both VCSEL laser and LED sources, 10G OM3 OM4 MPO/MTP Cable provide 10 gigabit data transfer speeds in high bandwidth applications and they are 5 times faster than standard 50um fiber cable. Multimode MPO/MTP Cable is the cable of choice for most common local fiber systems as the devices for multimode are far cheaper. Single-mode MPO/MTP Cable is primarily used for applications involving extensive distances. The MPO/MTP Trunk cable is designs for Data Center Applications. The single-mode and multimode MPO/MTP cables are round cables with the outer diameter of 3.0 mm or 4.5 mm. The connector the cable is terminated on is so called MPO/MTP connector.

With server virtualization and cloud computing development and the trend of network integration, bringing greater demand of faster and more efficiently data center networks. Currently 10G switch is consist of 48 10G channels per line card, mainly limited by the SFP+ module form factor. To meet the higher bandwidth requirements, customers can use the higher-density QSFP+ ports developed by QSFP+ Jumper, and by increasing the per-channel rate and increasing port density to achieve customers’ high bandwidth requirements.