Author Archives: Admin

What Is a Multilayer Switch and How to Use It?

With the increasing diversity of network applications and the implementation of some converted networks, the multilayer switch is thriving in data centers and networks. It is regarded as a technology to enhance the network routing performance on LANs. This article will give a clear explanation for multilayer switch and how to use it.

What Is a Multilayer Switch?

The multilayer switch (MLS) has 10gbe switch and Gigabit Ethernet switch. It is a network device which enables operation at multiple layers of the OSI model. By the way, the OSI model is a reference model for describing network communications. It has seven layers, including the physical layer (layer 1), data link layer (layer 2), network layer (layer 3) and so on. The multilayer switch performs functions up to almost application Layer (layer 7). For instance, it can do the context based access control, which is a feature of layer 7. Unlike the traditional switches, multilayer switches also can bear the functions of routers at incredibly fast speeds. In addition, the Layer 3 switch is one type of multilayer switches and is very commonly used.

Figure 1: Seven layers in OSI model

Multilayer Switch vs Layer 2 Switch

The Layer 2 switch forwards data packets based on the Layer 2 information like MAC addresses. As a traditional switch, it can inspect frames. While multilayer switches not only can do all the job that Layer 2 switches do, it has routing function as well, including static routing and dynamic routing. So multilayer switches can inspect deeper into the protocol description unit.

For more information, you can read Layer 2 vs Layer 3 Switch: Which One Do You Need?

Multilayer Switch vs Router

Generally, multilayer switches and routers have three key differences. Firstly, routers typically use software to route. While multilayer switches route packets on ASCI (Application Specific Integrated Circuit) hardware. Another difference is that multilayer switches route packets faster than routers. In addition, based on IP addresses, routers can support numerous different WAN technologies. However, multilayer switches lack some QoS (Quality of Service) features. It is commonly used in LAN environment.

For more information about it, please refer to Layer 3 Switch Vs Router: What Is Your Best Bet?

Why Use a Multilayer Switch?

As mentioned above, the multilayer switch plays an important role in network setups. The following highlights some of the advantages.

  • Easy-to-use – Multilayer switches are configured automatically and its Layer 3 flow cache is set up autonomously. And there is no need for you to learn new IP switching technologies for its “plug-and-play” design.
  • Faster connectivity – With multilayer switches, you gain the benefits of both switching and routing on the same platform. Therefore, it can meet the higher-performance need for the connectivity of intranets and multimedia applications.
Figure 2: Multilayer switches

How to Use a Multilayer Switch?

Generally, there are three main steps for you to configure a multilayer switch.

Preparation

  • Determine the number of VLANs that will be used, and the IP address range (subnet) you’re going to use for each VLAN.
  • Within each subnet, identify the addresses that will be used for the default gateway and DNS server.
  • Decide if you’re going to use DHCP or static addressing in each VLAN.

Configuration

You can start configuring the multilayer switch after making preparations.

  • Enable routing on the switch with the IP routing command. (Note: some multilayer switches may support the protocols like RIP and OSPF.)
  • Log into multilayer switch management interface.
  • Create the VLANs on the multilayer switch and assign ports to each VLAN.

Verification

After completing the second step, you still need to offer a snapshot of the routing table entries and list a summary of an interface’s IP information and status. Then, the multilayer switch configuration is finished.

Conclusion

The multilayer switch provides high functions in the networking. It is suitable for VLAN segmentation and better network performance. When buying multilayer switches, you’d better take multilayer switch price and using environment into consideration. FS.COM offers a full set of network switch solutions and products, including SFP switch, copper switch, etc. If you have any needs, welcome to visit FS.COM.

What is Core Layer and How to Choose the Right Core Switch?

What is Core Layer?

The Core Layer in networking serves as the backbone of a hierarchical network design, forming a critical component within the three-layer model alongside the Access and Distribution layers. Situated at the center of network architecture, the Core Layer is designed for high-speed, high-capacity packet switching, ensuring swift and efficient transport of data across the entire network.

Unlike the Distribution Layer, the Core Layer typically focuses on rapid data transfer without applying extensive processing or policy-based decision-making. Its primary objective is to facilitate seamless and fast communication between different parts of the network.

Duty of Core Switches

In the enterprise hierarchical network design, the core layer switch is the topside one, which is relied on by the other access and distribution layers. It aggregates all the traffic flows from distribution layer devices and access layer devices, and sometimes core switches need to deal with external traffic from other egresses devices. So it is important for core switches to send large amounts of packets as much as possible. The core layer always consists of high-speed switches and routers optimized for performance and availability.

This image has an empty alt attribute
Figure 1: Core Switches in the three-tier architecture

Located at the core layer of enterprise networking, a core layer switch functions as a backbone switch for LAN access and centralizes multiple aggregation devices to the core. In these three layers, core switches require most highly in the switch performance. They are usually the most powerful, in terms of forwarding large amounts of data quickly. For most of the cases, core switches manage high-speed connections, such as 10G Ethernet, 40G Ethernet or 100G Ethernet. To ensure high-speed traffic transfer, core switches should not perform any packet manipulation such as Inter-Vlan routing, Access Lists, etc., which are performed by distribution devices.

Note: In small networks, it is often the case to implement a collapsed core layer, combining the core layer and the distribution layer into one as well as the switches. More information about the collapsed core is available in How to Choose the Right Distribution Switch?

Factors to Consider When Choosing Core Switches for Enterprises

Simply put, core layer switches are generally layer 3 switches with high performance, availability, reliability, and scalability. Except for considering the basic specifications like port speed and port types, the following factors should be considered when choosing core switches for an enterprise network design.

Performance

The packet forwarding rate and switching capacity matter a lot to the core switch in enterprise networking. Compared with the access layer switches and distribution switches, core switches must provide the highest forwarding rate and switching capacity as much as possible. The concrete forwarding rate largely depends on the number of devices in the network, the core switches can be selected from the bottom to the top based on the distribution layer devices.

For instance, network designers can determine the necessary forwarding rate of core switches by checking and examining the various traffic flow from the access and distribution layers, then identify one or more appropriate core switches for the network.

Redundancy

Core switches pay more attention to redundancy compared with other switches. Since the core layer switches carry much higher workloads than the access switches and distribution switches, they are generally hotter than the switches in the other two layers, the cooling system should be taken into consideration. As often the case, core layer switches are generally equipped with redundant cooling systems to help the switches cooling down while they are running.

The redundant power supply is another feature that should be considered. Imagine that the switches lose power when the networking is running, the whole network would shut down when you are going to perform a hardware replacement. With redundant power supplies, when one supply fails, the other one will instantly start running, ensuring the whole network unaffected by the maintenance.

FS provides switches with hot-swappable fans and power supply modules for better redundancy.

Reliability

Typically core switches are layer 3 switches, performing both switching and routing functions. Connectivity between a distribution and core switches is accomplished using layer 3 links. Core switches should perform advanced DDoS protection using layer 3 protocols to increase security and reliability. Link aggregation is needed in core switches, ensuring distribution switches delivering network traffic to the core layer as efficiently as possible.

Moreover, fault tolerance is an issue to consider. If a failure occurs in the core layer switches, every user would be affected. Configurations such as access lists and packet filtering should be avoided in case that network traffic would slow down. Fault-tolerant protocols such as VRRP and HSRP is also available to group the devices into a virtual one and ensure the communication reliability in case one physical switch breaks down. What’s more, when there are more than one core switches in some enterprise networks, the core switches need to support functions such as MLAG to ensure the operation of the whole link if a core switch fails.

QoS Capability

QoS is an essential service that can be desired for certain types of network traffic. In today’s enterprises, with the growing amount of data traffic, more and more voice and video data are required. What if network congestion occurs in the enterprise core? The QoS service will make sense.

With the QoS capability, core switches are able to provide different bandwidth to different applications according to their various characteristics. Compared with the traffic that is not so sensitive about time such as E-mail, critical traffic sensitive to time should receive higher QoS guarantees so that more important traffic can pass first, with the high forwarding of data and low package loss guaranteed.


As you can see from the contents above, there are many factors that determine what enterprise core switches are most suitable for your network environment. In addition, you may need a few conversations with the switch vendors and know what specific features and services they can provide so as to make a wise choice.


Related Articles:

How to Choose the Right Access Layer Switch?

How to Choose the Right Core Switch?

Understanding VXLAN: A Guide to Virtual Extensible LAN Technology

In modern network architectures, especially within data centers, the need for scalable, secure, and efficient overlay networks has become paramount. VXLAN, or Virtual Extensible LAN, is a network virtualization technology designed to address this necessity by enabling the creation of large-scale overlay networks on top of existing Layer 3 infrastructure. This article delves into VXLAN and its role in building robust data center networks, with a highlighted recommendation for FS’ VXLAN solution.

What Is VXLAN?

Virtual Extensible LAN (VXLAN) is a network overlay technology that allows for the deployment of a virtual network on top of a physical network infrastructure. It enhances traditional VLANs by significantly increasing the number of available network segments. VXLAN encapsulates Ethernet frames within a User Datagram Protocol (UDP) packet for transport across the network, permitting Layer 2 links to stretch across Layer 3 boundaries. Each encapsulated packet includes a VXLAN header with a 24-bit VXLAN Network Identifier (VNI), which increases the scalability of network segments up to 16 million, a substantial leap from the 4096 VLANs limit.

VXLAN operates by creating a virtual network for virtual machines (VMs) across different networks, making VMs appear as if they are on the same LAN regardless of their underlying network topology. This process is often referred to as ‘tunneling’, and it is facilitated by VXLAN Tunnel Endpoints (VTEPs) that encapsulate and de-encapsulate the traffic. Furthermore, VXLAN is often used with virtualization technologies and in data centers, where it provides the means to span virtual networks across different physical networks and locations.

VXLAN

What Problem Does VXLAN Solve?

VXLAN primarily addresses several limitations associated with traditional VLANs (Virtual Local Area Networks) in modern networking environments, especially in large-scale data centers and cloud computing. Here’s how VXLAN tackles these constraints:

Network Segmentation and Scalability

Data centers typically run an extensive number of workloads, requiring clear network segmentation for management and security purposes. VXLAN ensures that an ample number of isolated segments can be configured, making network design and scaling more efficient.

Multi-Tenancy

In cloud environments, resources are shared across multiple tenants. VXLAN provides a way to keep each tenant’s data isolated by assigning unique VNIs to each tenant’s network.

VM Mobility

Virtualization in data centers demands that VMs can migrate seamlessly from one server to another. With VXLAN, the migration process is transparent as VMs maintain their network attributes regardless of their physical location in the data center.

What Problem Does VXLAN Solve
Overcoming VLAN Restrictions
The classical Ethernet VLANs are limited in number, which presents challenges in large-scale environments. VXLAN overcomes this by offering a much larger address space for network segmentation.


” Also Check – Understanding Virtual LAN (VLAN) Technology

How VXLAN Can Be Utilized to Build Data Center Networks

When building a data center network infrastructure, VXLAN comes as a suitable overlay technology that seamlessly integrates with existing Layer 3 architectures. By doing so, it provides several benefits:

Coexistence with Existing Infrastructure

VXLAN can overlay an existing network infrastructure, meaning it can be incrementally deployed without the need for major network reconfigurations or hardware upgrades.

Simplified Network Management

VXLAN simplifies network management by decoupling the overlay network (where VMs reside) from the physical underlay network, thus allowing for easier management and provisioning of network resources.

Enhanced Security

Segmentation of traffic through VNIs can enhance security by logically separating sensitive data and reducing the attack surface within the network.

Flexibility in Network Design

With VXLAN, architects gain flexibility in network design allowing server placement anywhere in the data center without being constrained by physical network configurations.

Improved Network Performance

VXLAN’s encapsulation process can benefit from hardware acceleration on platforms that support it, leading to high-performance networking suitable for demanding data center applications.

Integration with SDN and Network Virtualization

VXLAN is a key component in many SDN and network virtualization platforms. It is commonly integrated with virtualization management systems and SDN controllers, which manage VXLAN overlays, offering dynamic, programmable networking capability.

By using VXLAN, organizations can create an agile, scalable, and secure network infrastructure that is capable of meeting the ever-evolving demands of modern data centers.

FS Cloud Data Center VXLAN Network Solution

FS offers a comprehensive VXLAN solution, tailor-made for data center deployment.

Advanced Capabilities

Their solution is designed with advanced VXLAN features, including EVPN (Ethernet VPN) for better traffic management and optimal forwarding within the data center.

Scalability and Flexibility

FS has ensured that their VXLAN implementation is scalable, supporting large deployments with ease. Their technology is designed to be flexible to cater to various deployment scenarios.

Integration with FS’s Portfolio

The VXLAN solution integrates seamlessly with FS’s broader portfolio, (such as the N5860-48SC and N8560-48BC, also have strong performance on top of VXLAN support), providing a consistent operational experience across the board.

End-to-End Security

As security is paramount in the data center, FS’s solution emphasizes robust security features across the network fabric, complementing VXLAN’s inherent security advantages.

In conclusion, FS’ Cloud Data Center VXLAN Network Solution stands out by offering a scalable, secure, and management-friendly approach to network virtualization, which is crucial for today’s complex data center environments.

Hyperconverged Infrastructure: Maximizing IT Efficiency

In the ever-evolving world of IT infrastructure, the adoption of hyperconverged infrastructure (HCI) has emerged as a transformative solution for businesses seeking efficiency, scalability, and simplified management. This article delves into the realm of HCI, exploring its definition, advantages, its impact on data centers, and recommendations for the best infrastructure switch for small and medium-sized businesses (SMBs).

What Is Hyperconverged Infrastructure?

Hyperconverged infrastructure (HCI) is a type of software-defined infrastructure that tightly integrates compute, storage, networking, and virtualization resources into a unified platform. Unlike traditional data center architectures with separate silos for each component, HCI converges these elements into a single, software-defined infrastructure. HCI’s operation revolves around the integration of components, software-defined management, virtualization, scalability, and efficient resource utilization to create a more streamlined, agile, and easier-to-manage infrastructure compared to traditional heterogeneous architectures.

Hyperconverged Infrastructure

Benefits of Hyperconverged Infrastructure

Hyperconverged infrastructure (HCI) offers several benefits that make it an attractive option for modern IT environments:

Simplified Management: HCI consolidates various components (compute, storage, networking) into a single, unified platform, making it easier to manage through a single interface. This simplifies administrative tasks, reduces complexity, and saves time in deploying, managing, and scaling infrastructure.

Scalability: It enables seamless scalability by allowing organizations to add nodes or resources independently, providing flexibility in meeting changing demands without disrupting operations.

Cost-Efficiency: HCI often reduces overall costs compared to traditional infrastructure by consolidating hardware, decreasing the need for specialized skills, and minimizing the hardware footprint. It also optimizes resource utilization, reducing wasted capacity.

Increased Agility: The agility provided by HCI allows for faster deployment of resources and applications. This agility is crucial in modern IT environments where rapid adaptation to changing business needs is essential.

Better Performance: By utilizing modern software-defined technologies and optimizing resource utilization, HCI can often deliver better performance compared to traditional setups.

Resilience and High Availability: Many HCI solutions include built-in redundancy and data protection features, ensuring high availability and resilience against hardware failures or disruptions.

Simplified Disaster Recovery: HCI simplifies disaster recovery planning and implementation through features like data replication, snapshots, and backup capabilities, making it easier to recover from unexpected events.

Support for Virtualized Environments: HCI is well-suited for virtualized environments, providing a robust platform for running virtual machines (VMs) and containers, which are essential for modern IT workloads.

Best Hyperconverged Infrastructure Switch for SMBs

The complexity of traditional data center infrastructure, both hardware and software, poses challenges for SMBs to manage independently, resulting in additional expenses for professional services for setup and deployment. However, the emergence of hyperconverged infrastructure (HCI) has altered this landscape significantly. HCI proves highly beneficial and exceedingly suitable for the majority of SMBs. To cater for the unique demands for hyper-converged appliance, FS.com develops the S5800-8TF12S 10gb switch which is particularly aimed at solving the problems of access to the hyper-converged appliance of small and medium-sized business. With the abundant benefits below, it is a preferred key solution for the connectivity between hyper-converged appliance and the core switch.

Data Center Grade Hardware Design

FS S5800-8TF12S hyper-converged infrastructure switch provides high availability port with 8-port 1GbE RJ45 combo, 8-port 1GbE SFP combo and 12-port 10GbE uplink in a compact 1RU form factor. With the capability of static link aggregation and integrated high performance smart buffer memory, it is a cost-effective Ethernet access platform to hyper-converged appliance.

FS Switch

Reduced Power Consumption

With two redundant power supply units and four smart built-in cooling fans, FS S5800-8TF12S hyper-converged infrastructure switch provides necessary redundancy for the switching system, which ensures optimal and secure performance. The redundant power supplies can maximize the availability of the switching device. The heat sensors on the fan control PCBA (Printed Circuit Board Assembly) monitor and detect the ambient airs. It converts fans speeds accordingly to adapt to the different temperatures, thus reducing power consumption in proper operating temperatures.

Multiple Smart Management

Instead of being managed by Web interface, the FS S5800-8TF12S hyper-converged infrastructure switch supports multiple smart management with two RJ45 management and console ports. SNMP (Simple Network Management Protocol) is also supported by this switch. Thus when managing several switches in a network, it is possible to make the changes automatically to all switches. What about the common switches managed only by Web interface? It will be a nightmare when an SMB needs to configure multiple switches in the network, because there’s no way to script the push out of changes if not parse the web pages.

Traffic Visibility and Trouble-Shooting

In FS S5800-8TF12S HCI switch, the traffic classification is based on the combination of the MAC address, IPv4/IPv6 address, L2 protocol header, TCP/UDP, outgoing interface, and 802.1p field. The traffic shaping is based on interfaces and queues. Thus the traffic flow which are visible and can be monitored in real time. With the DSCP remarking, the video and voice traffic that is sensitive to network delays can be prioritized over other data traffic, so the smooth video streaming and reliable VoIP calls are ensured. Besides, the FS S5800-8TF12S switch comes with comprehensive functions that can help in trouble-shooting. Some basic functions include Ping, Traceroute, Link Layer Discovery Protocol (LLDP), Syslog, Trap, Online Diagnostics and Debug.

Conclusion

Hyperconverged infrastructure stands as a catalyst for IT transformation, offering businesses a potent solution to optimize efficiency, streamline operations, and adapt to ever-changing demands. By embracing HCI and selecting the right infrastructure components, SMBs can harness the power of integrated systems to drive innovation and propel their businesses forward in today’s dynamic digital landscape.

How SDN Transforms Data Centers for Peak Performance?

SDN in the Data Center

In the data center, Software-Defined Networking (SDN) revolutionizes the traditional network architecture by centralizing control and introducing programmability. SDN enables dynamic and agile network configurations, allowing administrators to adapt quickly to changing workloads and application demands. This centralized control facilitates efficient resource utilization, automating the provisioning and management of network resources based on real-time requirements.

SDN’s impact extends to scalability, providing a flexible framework for the addition or removal of devices, supporting the evolving needs of the data center. With network virtualization, SDN simplifies complex configurations, enhancing flexibility and facilitating the deployment of applications.

This transformative technology aligns seamlessly with the requirements of modern, virtualized workloads, offering a centralized view for streamlined network management, improved security measures, and optimized application performance. In essence, SDN in the data center marks a paradigm shift, introducing unprecedented levels of adaptability, efficiency, and control.

The Difference Between SDN and Traditional Networking

Software-Defined Networking (SDN) and traditional networks represent distinct paradigms in network architecture, each influencing data centers in unique ways.

Traditional Networks:

  • Hardware-Centric Control: In traditional networks, control and data planes are tightly integrated within network devices (routers, switches).
  • Static Configuration: Network configurations are manually set on individual devices, making changes time-consuming and requiring device-by-device adjustments.
  • Limited Flexibility: Traditional networks often lack the agility to adapt to changing traffic patterns or dynamic workloads efficiently.

SDN (Software-Defined Networking):

  • Decoupled Control and Data Planes: SDN separates the control plane (logic and decision-making) from the data plane (forwarding of traffic), providing a centralized and programmable control.
  • Dynamic Configuration: With a centralized controller, administrators can dynamically configure and manage the entire network, enabling faster and more flexible adjustments.
  • Virtualization and Automation: SDN allows for network virtualization, enabling the creation of virtual networks and automated provisioning of resources based on application requirements.
  • Enhanced Scalability: SDN architectures can scale more effectively to meet the demands of modern applications and services.

In summary, while traditional networks rely on distributed, hardware-centric models, SDN introduces a more centralized and software-driven approach, offering enhanced agility, scalability, and cost-effectiveness, all of which positively impact the functionality and efficiency of data centers in the modern era.

Key Benefits SDN Provides for Data Centers

Software-Defined Networking (SDN) offers a multitude of advantages for data centers, particularly in addressing the evolving needs of modern IT environments.

  • Dealing with big data

As organizations increasingly delve into large data sets using parallel processing, SDN becomes instrumental in managing throughput and connectivity more effectively. The dynamic control provided by SDN ensures that the network can adapt to the demands of data-intensive tasks, facilitating efficient processing and analysis.

  • Supporting cloud-based traffic

The pervasive rise of cloud computing relies on on-demand capacity and self-service capabilities, both of which align seamlessly with SDN’s dynamic delivery based on demand and resource availability within the data center. This synergy enhances the cloud’s efficiency and responsiveness, contributing to a more agile and scalable infrastructure.

  • Managing traffic to numerous IP addresses and virtual machines

Through dynamic routing tables, SDN enables prioritization based on real-time network feedback. This not only simplifies the control and management of virtual machines but also ensures that network resources are allocated efficiently, optimizing overall performance.

  • Scalability and agility

The ease with which devices can be added to the network minimizes the risk of service interruption. This characteristic aligns well with the requirements of parallel processing and the overall design of virtualized networks, enhancing the scalability and adaptability of the infrastructure.

  • Management of policy and security

By efficiently propagating security policies throughout the network, including firewalling devices and other essential elements, SDN enhances the overall security posture. Centralized control allows for more effective implementation of policies, ensuring a robust and consistent security framework across the data center.

The Future of SDN

The future of Software-Defined Networking (SDN) holds several exciting developments and trends, reflecting the ongoing evolution of networking technologies. Here are some key aspects that may shape the future of SDN:

  • Increased Adoption in Edge Computing: As edge computing continues to gain prominence, SDN is expected to play a pivotal role in optimizing and managing distributed networks. SDN’s ability to provide centralized control and dynamic resource allocation aligns well with the requirements of edge environments.
  • Integration with 5G Networks: The rollout of 5G networks is set to revolutionize connectivity, and SDN is likely to play a crucial role in managing the complexity of these high-speed, low-latency networks. SDN can provide the flexibility and programmability needed to optimize 5G network resources.
  • AI and Machine Learning Integration: The integration of artificial intelligence (AI) and machine learning (ML) into SDN is expected to enhance network automation, predictive analytics, and intelligent decision-making. This integration can lead to more proactive network management, better performance optimization, and improved security.
  • Intent-Based Networking (IBN): Intent-Based Networking, which focuses on translating high-level business policies into network configurations, is likely to become more prevalent. SDN, with its centralized control and programmability, aligns well with the principles of IBN, offering a more intuitive and responsive network management approach.
  • Enhanced Security Measures: SDN’s capabilities in implementing granular security policies and its centralized control make it well-suited for addressing evolving cybersecurity challenges. Future developments may include further advancements in SDN-based security solutions, leveraging its programmability for adaptive threat response.

In summary, the future of SDN is marked by its adaptability to emerging technologies, including edge computing, 5G, AI, and containerization. As networking requirements continue to evolve, SDN is poised to play a central role in shaping the next generation of flexible, intelligent, and efficient network architectures.