Tag Archives: gigabit switches

Do I Need a Gigabit Switch or 10/100Mbps Switch?

Ethernet network speeds have evolved significantly over time and typically range from Ethernet (802.11) at 10Mbps, Fast Ethernet (IEEE 802.3u) at 100Mbps, Gigabit Ethernet (IEEE 802.3-2008) at 1000Mbps and 10 Gigabit Ethernet (IEEE 802.3a) at 10Gbps. Meanwhile, Ethernet switches have also escalated from 10/100Mbps switches to Gigabit switches, 10GbE switch, and even 100GbE switches. The topic came up frequently that “Do I Need a Gigabit Switch or 10/100Mbps Switch?” Gigabit switch vs 10/100Mbps switch, which do I need to satisfy my network speeds requirement? This post will give you the answer.

Ethernet Speed

Gigabit Switch: the Mainstream on Network Switch Market

A Gigabit switch is an Ethernet switch that connects multiple devices, such as computers, servers, or game systems, to a Local Area Network (LAN). Small business and home offices often use Gigabit switches to allow more than one device to share a broadband Internet connection. A gigabit switch operates in the same manner, only at data rates much greater than standard or Fast Ethernet. People can use these switches to quickly transfer data between devices in a network, or to download from the Internet at maximum speeds of 1000Mbps. If a switch says “Gigabit”, it really means the same thing as 10/100/1000, because Gigabit switches support all three speed levels and will auto-switch to the appropriate one when something is plugged in. The following is a Gigabit 8 port poe switch with 8 x 10/100/1000Base-T RJ45 Ethernet ports.

8 port poe gigabit switches

10/100Mbps Switch: Still Alive and Well for Some Reason

10/100Mbps switch is a Fast Ethernet switch released earlier than Gigabit Ethernet switch. The data speed of 10/100Mbps switch is rated for 10 or 100Mbps. When a network switch says “10/100”, it means that each port on the switch can support both 10Mbps and 100Mbps connection speeds, and will usually auto-switch depending on what’s plugged into it. Currently, few devices run at 10Mbps, but it is still alive on the market for some reason. Actually, 10/100 is sufficient for internet browsing and Netflix. But if you will be doing more than one thing with your network connection, such as file transfers, or the set-top box, I would recommend you go with the Gigabit switch.

10/100Mbps Switch

Gigabit Switch vs 10/100Mbps Switch: How to Choose?

Network engineers who refresh the edge of their campus LAN encounter a fundamental choice: Stick with 100Mbps Fast Ethernet or upgrade to Gigabit Ethernet (GbE). Vendors will undoubtedly push network engineers toward pricier GbE, but network engineers need to decide for themselves which infrastructure is right for the business. Currently, Gigabit switch is much more popular than Fast Ethernet 10/100Mbps switch. Because gigabit switch used in tandem with a gigabit router will allow you to use your local network at speeds up to ten times greater than 10/100Mbps switch. If either of these component are not gigabit, the entire network will be limited to 10/100 speeds. So, in order to use the maximum amount of speed your network can pump out, you need every single component in your network (including you computers) to be gigabit compliant. In addition, by delivering more bandwidth and more robust management, Gigabit switches are also more energy efficient than 10/100Mbps switches. This offers enterprises the opportunity to lower their power consumption on the network edge.

Conclusion

There’s a multitude of switch options to choose from on the dazzling market. So, before determining the right switch for your network, you’re supposed to have a close look at your current deployment and future needs. But for most cases, we recommend you buy Gigabit Ethernet devices instead of Fast Ethernet devices, even if they cost a little bit more. FS provides a full set of Gigabit switches, including 8 port switch, 24 port switch, 48 port switch, etc. With these high performance Gigabit Ethernet switches, your local network will run faster with better internet speed.

Related articles: FS.COM Gigabit Switch Selection Guide

                             Fast Ethernet vs Gigabit Ethernet

Deploying 10G ToR/Leaf Switch for Different Size Networks

With the migration from Gigabit Ethernet to 10 Gigabit Ethernet, cabling and network switching architectures have been reevaluated to guarantee a cost-effective and smooth transition. 10Gb ToR (Top of Rack) or leaf switch has evolved with significant performance gains and cost-per-port reduction. This post will introduce the benefits of ToR architecture and explains how to deploy 10G ToR/leaf switch for different size networks.

Why Use Top-of-Rack Architecture

ToR or leaf-spine is a network architecture design where there are only two tiers of switches between the servers and the core network. In ToR network design, a feature-rich 10GbE switch handles Layer2 and Layer3 processing, data bridging and Fibre Channel over Ethernet (FCoE) for an entire rack of servers. This approach contributes to an agile infrastructure because the ToR/leaf switches can support multiple I/O interfaces, including GbE, 10GbE and 40GbE. The 10G ToR/leaf switches utilized in the ToR architecture usually come with the advantage of low power consumption, ease of scale and simplified cabling complexity. When acting as a ToR/leaf switch, each 10G Ethernet switch can be placed just one hop away from another, no need to jump up and down in the tree design, enabling improved latency and bottlenecks. With a ToR design, you can eliminate cabling nightmares, minimize bottlenecks while building a network foundation for mission-critical applications that also provides a clear path for future growth.

Top of Rack Architecture

Campus Network Applications

For campus networks applications, the 10GE switches work as aggregation or core switches in the ToR network architecture. Here we take FS S5850-48S6Q 10G ToR/leaf switch as an example to illustrate how to build a ToR network in campus networks. In the following application diagram, two FS S5850-48S6Q 10GE switches are utilized as aggregation switches as the bridge to build connections between 40G switches in the core network and gigabit switches in the access layer.

10G ToR Switch Campus Network Application

SMB (Small and Medium-Sized Business) Applications

For small and medium-sized businesses, ToR network architectures are becoming more preferable by IT managers than ever before. Because ToR architectures enable them to implement a single cabling model that can support Gigabit Ethernet and 10 Gigabit Ethernet and unified network fabric today, while supporting future 40 and 100 Gigabit Ethernet standards as they come to market. Using ToR architecture for fiber cable management, business IT managers have the flexibility to deploy preconfigured racks with different connectivity requirements in any rack position. For example, a rack of servers running multiple Gigabit Ethernet connections can be placed next to a rack of servers with 10 Gigabit Ethernet and FCoE connections to each server.

Data Center Applications

In hyper-scale data centers, there might be hundreds or thousands of servers that are connected to a network. In this case, ToR/leaf switches work in conjunction with spine switches in data centers to aggregate traffic from server nodes and then connect to the core of the network. Now given that we need to build a data center fabric with a primary goal of having at least 480 10G servers in the fabric. In this case, we can use FS S8050-20Q4C as spine switch and S5850-32S2Q as ToR/leaf switch. As shown in the figure below, the connections between spine switches (FS S8050-20Q4C) and ToR/leaf switches (FS S5850-32S2Q) are 40G, while connections between the leaf switches and servers are 10G. The port numbers on each spine switch determines the number of leaf switches we can use. But the maximum amount of 10G servers we can connect to ToR/leaf switch here is 24 because the ratio of reasonable bandwidth between leaf and spine switch cannot exceed 3:1. Thus the total amount of bandwidths we can get here is 480x10G.

10G ToR Switch Data Center Application

Top-of-Rack Cabling Recommendations

ToR network architectures utilize available cabling media options with flexibility at the rack level, using various server patch cable types, while taking advantage of fiber uplinks from the rack for horizontal cabling. Investment in the cabling media for 10, 40, and 100 Gigabit Ethernet connectivity involves striking a balance among bandwidth, flexibility, and scalability. Although both fiber and copper can support 10G, 40G and 100G transmission, fiber is the recommended horizontal cabling media as it offers an optimal solution for high speed 40G and 100G transmission over relatively long distances. Note that 40G and 100G transmission calls for multiple fiber strands (OM3, OM4, and SMF fiber).

Conclusion

The choice of ToR networking architecture can substantially affect throughput, sustainability, optimum density and energy management. As the key element of building ToR networks, 10G ToR/leaf switch can help you scale up networking architecture while delivering low-latency and high-bandwidth links. FS S5850/N5850 series switches are high performance 10GbE ToR/leaf switches which can work with Broadcom, Cisco, Juniper, Arista switches, as well as other major brands. For more information about 10GbE ToR/leaf switches, please kindly visit www.fs.com.

Related Article: 10G ToR/Leaf Ethernet Switch: What Is the Right Choice?