Tag Archives: SFP Transceiver

Cisco Transceiver Module: GLC-T vs GLC-TE

Cisco SFP transceiver modules have become exceedingly popular with the widespread of Cisco routers and switches. GLC-T and GLC-TE are the two types of Cisco SFP transceiver module. Since the name GLC-T and GLC-TE are quite similar, many end users may be confused. So are they the same one? Here we’ll focus on GLC-T vs GLC-TE to help find the answer.

<p style="text-align: justify;">

GLC-T Datasheet

Cisco GLC-T SFP is a 1000BASE-T Small Form-Factor Pluggable RJ45 interface converter. It can be inserted into Gigabit Ethernet ports to connect ports to the network. GLC-T SFP transceiver provides 1Gbps data transmission. Besides, it supports the full-duplex Gigabit Ethernet connection for the high-end workstation. Operating on CAT5 cables, this SFP transceiver is designed with the max cable distance up to 100 meters. However, GLC-T has not been on sale since June 1, 2017. The following is the GLC-T datasheet.

1000BASE-T SFP transceiver for CAT5 wire, RJ 45 connector
Max Data Rate
Max Distance
Operating Temperature
0 to 70°C (32 to 158°F)
Commercial Availability
Announced EOS by Cisco and has not been available for sale since June 1, 2011

GLC-TE Datasheet

GLC-TE transceiver is also a Cisco SFP module that designed for Gigabit Ethernet applications. It’s compatible with the IEEE802.3 1000BASE-T standard. It’s the replacement model of GLC-T, which means GLC-TE is an improved technology product. Therefore, this transceiver is designed with the same features of GLC-T type, but has an extended temperature range from -5 to 85°. GLC-TE is the latest in technology and definitely will continue to be sold for years. The table below shows GLC-TE datasheet.GLC-TE Datasheet

1000BASE-T SFP transceiver for CAT5 wire, RJ 45 connector, extended temperature
Max Data Rate
Max Distance
Operating Temperature
-5 to 85° (23 to 185°F)
Commercial Availability
New product and will continue to be sold for years.

GLC-T vs GLC-TE: Difference and Similarity

  • Difference. From the above, we can clearly know that the main difference between GLC-T vs GLC-TE is the operating temperature. This means GLC-TE can work in a lower or higher temperature environment without any damage.
  • Similarity. Both GLC-T and GLC-TE are 1000BASE-T copper transceivers that comply with IEEE 802.3 standard. They support the same data transmission speed and cable distance via CAT5 copper cables. However, considering that GLC-T SFP transceiver has stopped production, GLC-TE is the best choice.

In addition, as for GLC-T vs GLC-TE, there are many similarities except for operating temperature. The two SFP transceivers can be used in the following cabling system.

glc-t vs glc-te cabling

All the networking equipment is produced by FS.COM. They are:

Item NO.
Cisco GLC-T Compatible 1000BASE-T SFP Copper RJ-45 100m
3.3ft (1m) Cat6 Snagless Unshielded (UTP) PVC Ethernet Network Patch Cable, Gray
24 Ports Cat6 Feed-Through Patch Panel, UTP Unshielded, 1U Rack Mount
3m (10ft) 6 Plug to 6 Plug Cat6 Unshielded PVC CMR (Blue) Pre-Terminated Copper Trunk
S5800-48F4S (48*1GE+4*10GE) High Performance Data Center Switch
Generic Compatible 1000BASE-T SFP Copper RJ-45 100m


As for GLC-T vs GLC-TE, we have found the difference and similarity. Both GLC-T and GLC-TE SFP transceivers are widely used because they are convenient and cost effective means for adopting Gigabit Ethernet in a myriad of industries and sectors. As a reliable and qualified networking solution supplier, FS.COM provides a full line of networking equipment like transceivers, switches etc. For further information, please visit FS.COM.

How to Install SFP transceiver Correctly?

SFP (small form factor pluggable) transceiver is now ubiquitous in Gigabit Ethernet networks. It serves as a hot-pluggable I/O devices that being inserted into module sockets to create 1 Gigabit transmission. SFP transceiver is generally used for applications both in telecommunication and data communication, which can be intermixed with 1000BASE-T, 1000BASE-SX, 1000BASE-LX/LH, 1000BASE-ZX and 1000BASE-BX10-D/U on a port-by-port basis. Fail to install SFP transceiver can cause catastrophic damage to the module and network, hence it is better to grasp some knowledge on the right installation procedures.


Precautions for Installing SFP Transceiver

Here are some precautions you should be aware of before delivering installation.

  • Make sure to disconnect all the cables before installing the SFP transceiver, in case any damage that may be caused to cables, connectors and the optical interfaces.
  • Try not to install and remove the SFP transceiver too often since this may shorten its life expectancy.
  • Transceiver modules are rather sensitive to static, it is suggested to use an ESD wrist strap or comparable grounding device during the process of installation and removal.
  • Never remove the dust plug from the SFP transceiver unless you are ready to put it into use. Similarly, the dust plug on the SFP transceiver is used to protect the optical bore and shall not be removed until you attaching patch cable to it.

Additionally, some professional tools are also required to complete the installation, including:

  • Wrist strap or other personal grounding device to prevent ESD occurrence.
  • Antistatic mat or antistatic foam to set the transceiver on.
  • Fiber-optic end-face cleaning tools and inspection equipment.
SFP Transceiver Installation: How to Make it Right?

SFP transceiver primarily have three types of latching devices to secure itself in a port socket: a mylar tab latch, a bale-clasp latch and an actuator button latch. With the bale-clasp latch to be the most widely used one. You should be clear which type of latch your SFP transceiver have before install it. Bear the aforementioned precaution in mind, then perform the following steps to complete installing SFP transceiver.


Step 1. Attach an ESD-preventive wrist strap to your wrist and to the ESD ground connector or a bare metal surface on your chassis.

Step 2. Remove the SFP transceiver module from its protective packaging.

Note: Do not remove the optical bore dust plugs until directed to do so later in the procesure.

Step 3. Check the label on the SFP body to verify that you have the correct model for your network.

Step 4. Find the send (TX) and receive (RX) markings that identify the top side of the SFP transceiver.

Note: On some SFP transceivers, the TX and RX marking might be replaced by arrowheads that point from the SFP transceiver connector (transmit direction or TX) and toward the connector (receive direction or RX).

Step 5. Position the SFP transceiver in front of the socket opening.

Note: different devices may have various SFP module socket configurations, either a latch-up or a latch-down orientation. Ensure that you are installing the SFP transceiver in the correct orientation for your device. Refer to the hardware installation instructions that came with your device for mire details.

    • For transceiver with a mylar/pull tab.


    • For transceivers with a bale-clasp latch.


  • For transceivers with an actuator latch.


Step 6. Insert the SFP transceiver into the socket until you feel the SFP module connector snap into place in the socket.


Note: For optical SFP transceivers, before you remove the dust plugs and make any optical connections, observe these guidelines:

  • Always keep the protective dust plug on the unplugged fiber-optic cable connectors and the transceiver optical bores until you are ready to make a connection.
  • Always inspect and clean the LC connector end-faces just before you make any connections.
  • Always grasp the LC connector housing to plug or unplug a fiber-optic cable.


Step 7. Press the SFP into the slot firmly with your thumb. You must press firmly on both the transceiver face-plate and the actuator button to ensure that the transceiver is properly latched in the socket.


Step 8. To verify that the SFP is seated and latched properly. Grasp the SFP and try to remove it without releasing the latch. If the SFP can not be removed, it is installed and seated properly. If the it can be removed, reinsert it and press harder with your thumb, repeating if necessary until it is latched securely into the socket.


Step 9. Remove the dust plugs from the LC fiber patch cable and save the dust plugs for future use. Then inspect and clean the patch cable end-face.

Step 10. Remove the dust plugs from the SFP transceiver optical bores. And immediately attach the LC fiber patch cable to the SFP transceiver.


To install a SFP transceiver is a commonplace in data center, yet not as easy as it appears. There are much to consider before you actually perform the action. And you have to get fully prepared with a thorough plan. Hope this step-by-step guide would be informative enough to practice right SFP transceiver installation. FS provides a whole line of optical transceiver products, including SFP, SFP+, QSFP+ and QSFP28 transceiver modules, as well as CWDM and DWDM transceivers. For more details, please visit www.fs.com.

Related Article: Optical Module Maintenance Methods and Installation Tips

Related Article: FS 40G QSFP+ Modules And DAC/AOC Cables Installation Guide

Facts You Should Know About XFP Transceiver

Due to its function of transmitting and receiving signals, transceiver plays an essential role in modern fiber optic networks. There are some common types of transceiver include SFP, SFP+, XFP. XFP transceiver is one of the most useful technological advancements on the market. This text is going to illustrate some facts about XFP.

High-speed computer network and telecommunication links using optical fiber will apply XFP standard for transceivers. XFP transceiver is a 10-Gigabit small form factor pluggable and was defined as the industry standard in 2002, along with other electrical components. The interfaces are often referred to as XFI. XFI electrical interface specification was a 10 gigabit per second chip-to-chip electrical interface specification defined as part of the XFP multi-source agreement.

Hot-Swappable and Protocol-Independent

XFP transceivers are hot-swappable and protocol-independent, which means that you don’t have to shut down the entire device before replacing it. This adorable feature is welcomed by many of the designers who employ XFP transceivers in their designs. Designers who always need to upgrade their devices or have high failure rates in a harsh environment will appreciate the ability to replace devices quickly.

Operation and Application

XFP transceiver generally operates at wavelengths (colors) of 850 nm, 1310 nm or 1550 nm. Principal applications include 10 Gigabit Ethernet, 10 Gbit/s Fibre Channel, synchronous optical networking (SONET) at OC-192 rates, synchronous optical networking STM-64, 10 Gbit/s Optical Transport Network (OTN) OTU-2, and parallel optics links. They can operate over a single wavelength or use dense wavelength-division multiplexing techniques. They include digital diagnostics that provide management that were added to the SFF-8472 standard.


The XFP transceiver specification was developed by the XFP Multi Source Agreement Group. It is an informal agreement of an industry group, not officially endorsed by any standards body. The first preliminary specification was published on March 27, 2002. The first public release was on July 19, 2002. It was adopted on March 3, 2003, and updated with minor updates through August 31, 2005. The chair of the XFP group was Robert Snively of Brocade Communications Systems, and technical editor was Ali Ghiasi of Broadcom. The organization’s website was maintained until 2009.


XFP transceivers are available with numerous types, allowing users to select suitable one to meet their needs.

  • SR – 850 nm, for a maximum of 300 m
  • LR – 1310 nm, for distances up to 10 km
  • ER – 1550 nm, for distances up to 40 km
  • ZR – 1550 nm, for distances up to 80 km

Take 10G XFP for example, there are two types: single mode and multi mode. The following picture is a 10GBASE-SR XFP 850nm 300m Multi-Mode Optical Transceiver.

10G XFP transceiver


The XFP transceiver packaging is smaller than the XENPAK form-factor, which is desirable by many designers. The smaller the footprint, the easier it is to design it into the designs as needed. The best devices support both the XENPAK and the XFP transceiver.


From this text, you can acknowledge above facts about XFP transceiver. The hot-swappable
nature of XFPs and the numerous types contribute to easy configuration and future upgrading. Fiberstore provides a complete range of XFP transceiver modules which can be customized. In addition, it also supplies Compatible XFP transceivers as alternatives to those branded by Cisco, HP, Juniper Networks etc. For more information, please visit Fiberstore.

How to Choose the Right Type of Optical Transceiver

Choosing the right optical transceiver is not easy. You can approach the selection process by reviewing the device as a single entity or you can explore the fiber cable separately. Either way, you need to be aware of what’s needed for your application to work optimally. If you know what you need to edge out the competition, you’ll be in a better position when you’re speaking with representatives about the fiber optic cable. Here’s what you should consider:

Which Fiber Mode That’s Required
There are two basic types of fiber: multimode fiber and single-mode fiber. Multimode fiber will allow each signal to travel on more than one pathway at one time, which is best designed for short transmission distances, and is suited for use in LAN systems and video surveillance. Single-mode fiber is best designed for longer transmission distances, which is used in applications that need bandwidth that will travel over long distances.

Determine if You’ll Need Full-Duplex or Half-Duplex
Some chips will only use full-duplex configuration. Selecting switches, HUBs, or transceivers with half-duplex mode may cause loss and conflict. Only choose full-duplex unless you think that your application can support half-duplex. Nowadays, Ethernet interfaces on the switch operate at 10, 100, or 1000 Mbps, or 10,000 Mbps and in either full- or half-duplex mode.

Consider Whether You’ll Need a Safety Device to Prevent Packet Loss
Some vendors may just need to reduce costs and loss. Thus, they have to choose an optical transceiver with maximum safety features and loss prevention.

Consider Whether the Transceivers Have Temperature Adaptability
Optical transceivers shouldn’t run hot. Optical transceivers may fail prematurely at high temperatures. That is why it’s important to know how well an optical transceivers can adapt to heat if it will be in high temperatures.

Determine if You’ll Need Copper or Optical Fiber
Take an example of Gigabit Ethernet SFP module, 1000BASE-T (e.g. GLC-T) SFP module operates on standard Category 5 wiring and has a RJ-45 connector. 1000BASE-SX SFP transceiver operates on ordinary multi-mode fiber optic link spans of up to 550 m in length. 1000BASE-LX/LH SFP operates on single-mode fiber (SMF) for a maximum length of 10km. 1000BASE-ZX SFP using an extended wavelength operates on single-mode optical fiber for up to 100km.

Consider the Construction of the Fiber You’ll Need
There are some basic types of internal construction, but you have to choose the one that will work best for your application. One of the most popular types is the distribution or tight pack. The second type of construction is the breakout or fanout design. This design gives each buffered fiber its own individual jacket and is a more durable design.

optical transceiver typeThe zip cord or assembly is another type of internal construction that is offered to the designers. This is one of the preferred internal construction options. In this construction, one or two buffered fibers in individual jackets should be considered. Single fiber cable is recommended for patching.

The last factor you should consider is the level of flame resistance. Remember that there are three different grades available: general, special, and high. The level of flame resistance can be measured through a variety of tests including those determining smoke density values and flame propagation.

Choosing the Right Fiber Transceiver Type is Not Easy
Choosing the right fiber transceiver type is not easy. There are lots of elements to be considered. These are typically considered on a case-by-case basis. Consider all of the factors mentioned such as the internal construction, fiber mode, fiber cable jackets, and the level of flame resistance.

OEM Optical Transceiver Solution
FS.COM is a professional OEM manufacturer and supplier of optical networking solutions, which can supply 100% compatible Cisco SFP and SFP+ transceivers, such as GLC-SX-MM, GLC-SX-MMD, GLC-T, GLC-LH-SMD and GLC-FE-100LX, etc. According to your requirements, FS.COM welcomes any inquiry for customized optical transceiver type.

Related Articles: How to Select the Right Fiber Patch Cable for 40G QSFP+ Transceiver?

                              SFP Module: What’s It and How to Choose It?

What Is An Optical Module?

1000BASE-X Media Components

The following set of media components are used to build a 1000BASE-X fiber optic segment:

1. Fiber optic cable

2. Fiber optic connectors

Gigabit Ethernet fiber optic segments use pulses of laser light instead of electrical currents to send Ethernet signals. This approach has several advantages. For one thing, a fiber optic link segment can carry Gigabit Ethernet signals for considerably longer distances than twisted-pair media can. The standard specifies that a full-duplex 1000BASE-LX segment must be able to reach as far as 5,000 meters (16,404 feet, or a little over 3 miles). However, most vendors sell “long haul” versions of 1000BASE-LX equipment that are designed to reach as far as 10 km (6.2 miles) on single-mode fiber. Vendors have also developed “extended reach” versions of 1000BASE-LX single-mode interfaces that can send signals over distances of 70-100 kilometers or more.

In large, multibuilding campuses, the fiber distances can add up fast, as the fiber cables may not be able to take the most direct route between buildings on the campus and a central switching location. Therefore, these long-reach transceivers can be quite useful. The LX interfaces are essential when it comes to building metropolitan area network(MAN) links, in which Gigabit Ethernet is used to provide network services between sites on a city-wide basis.

Fiber optic cable

Both 1000BASE-SX and 1000BASE-LX fiber optic media segments require two strands of cable: one for transmitting and one for receiving data. The required signal crossover, in which the transmitting and one for reciving data. The required signal crossover, in which the transmit signal (TX) at one end is connected to the receive signal (RX) at the ther end, is performed in the fiber optic link. (Related products in: 10GBASE-LR XFP)

Maximum segment lengths for 1000BASE-SX and 1000BASE-LX are dependent on a number of factors. Fiber optic segment lengths in the Gigabit Ethernet system will vary depending on the cable type and wavelength used.

Fiber optic connectors

The original standard recommended the use of duplex SC fiber optic connectors for both 1000BASE-SX and 1000BASE-LX fiber optic media segments. Figure 1 shows a duplex SC connector. Although the standard can recommend a connector, vendors can use other fiber optic connectors as long as they are not forbidden in the standard. For examle, when the 1000BASE-X media systems first became available, vendors used the compact MT-RJ connector on 1000BASE-SX ports.

21   Figure 1, Duplex SC connector
Figure 2 shows the MT-RJ connector, which provided both fiber connections in a space the size of an RJ45 connector. Because the MT-RJ connector takes up about half the space required by the SC connectors, this allowed vendors to provide more 1000BASE-SX ports on swithch.

22 Figure 2, MT-RJ connector

1000BASE-X transceivers

Some vendors used the Gigabit Interface Converter (GBIC), which was an earlier form of transceiver module that allowed the customer to support either the 1000BASE-SX or 1000BASE-LX media types on a single port. The GBIC is a small, hot-swappable module that provides the media system signaling components for a Gigabit Ethernet port.

More recently, vendors have developed a small form-factor pluggable (SFP) transceiver, which can be purchased to support several different kinds of Ethernet fiber optic media systems.

The SFP Transceiver is a small module the plugs into a seitch port and uses a small fiber optic connector called the LC connector. Figure 3 shows the smaller LC fiber optic plug, which is used for connections to SFP fiber optic transceivers.

23Figure 3, Duplex LC fiber optic plug