Tag Archives: OEO converter

Introduction to WDM Transponder

With the development of wavelength-division multiplexing (WDM) technology, the network traffic volume is increasing and the demand for more network bandwidth is also on the rise. By converting the operating wavelength of the incoming bitstream to an ITU-compliant wavelength, WDM transponder serves as a key component in WDM system. As an important technology in the fiber optical network, WDM is moving beyond transport to become the basis of all-optical networking. And how to optimize WDM network has always been a hot topic. The transponder is a device to optimize the performance of WDM network, which plays an important in the whole system of WDM network. This article will introduce you the information on WDM transponders.

What Is WDM Transponder?

Also called as an OEO (optical-electrical-optical) transponder, a WDM transponder unit is an optical-electrical-optical wavelength converter, which has been widely adopted in a variety of networks and applications. The picture below shows us how a bidirectional transponder works. In this picture, the transponder is located between a client device and a DWDM system. And we can see clearly that, from left to right, the transponder receives an optical bitstream operating at one particular wavelength (1310 nm), and then converts the operating wavelength of the incoming bitstream to an ITU-compliant wavelength and transmits its output into a DWDM system. On the receive side (right to left), the process is reversed. The transponder receives an ITU-compliant bitstream and converts the signals back to the wavelength used by the client device.

WDM transponder

The Application of a WDM Transponder

According to its function, the application of WDM transponders can be classified into the following types.

  • Wavelength Conversion. It is known to us that when a CWDM Mux/Demux or DWDM Mux/Demux is added into a WDM network, there is a requirement to convert optical wavelengths like 850nm, 1310nm and 1550nm to CWDM or DWDM wavelengths. Then the OEO transponder comes to assist. The OEO transponder receives, amplifies and re-transmits the signal on a different wavelength without changing the signal content.
  • Fiber Mode Conversion. Multimode fiber optic cables (MMF) are often used in short distance transmission, while single-mode fiber optic cables (SMF) are applied in long optical transmission. Therefore, in some network deployment, considering the transmission distances, MMF to SMF or SMF to MMF conversions are needed. WDM transponders can convert both multimode fiber to single-mode fiber and dual fiber to single fiber.
  • Signal Repeating. In long haul fiber optic transmission, WDM transponder also can work as repeaters to extend network distance by converting wavelengths (1310nm to 1550nm) and amplifying optical power. The OEO converters convert the weak optical signals from the fiber into electrical signals, and regenerate or amplify, then recover them into strong optical signals for continuous transmission.
WDM Transponder and FMT Solution

At FS, OEO transponders are made into small plug-in cards to be used on the FMT platform. FMT platform makes devices like EDFA, OEO, DCM, OLP and VOA into plug-in cards and provides standard rack units as well as free software to achieve better management and monitoring. In addition, FMT series products like OEO, DCM and OLP also have higher performance than that of old ones. FMT series OEO transponder can convert optical signals into DWDM wavelengths, reducing the fault risk caused by high power consumption of DWDM fiber optic transceiver. Since the OEO transponder is made into small plug-in card in the FMT platform, it only occupies one slot in the special designed chassis when installed, thus saving a lot of space. In addition, all these FMT plug-in cards, including OEO, in a rack unit share the same power source and support hot plug & play operation. And they can be inserted or removed flexibly in the racks for DWDM networking.



Since the OEO or WDM transponder plays an important role in WDM network, such as receiving, amplifying and re-transmitting the signal on a different wavelength, adding an OEO transponder into the WDM network is very essential. The OEO transponders in our FMT series are made into small plug-in cards with high quality to ensure good transmission performance. For more information on our FMT system, please visit www.fs.com.

Related Article: The Versatile Fiber Optic Transponder (OEO) in WDM System

OEO 3R Converter Instruction

Optical signals are transmitted on specific wavelengths like 850nm, 1310nm, 1550nm and CWDM wavelengths and DWDM wavelengths. In some cases, it occurs that you need to converter a wavelength of optical signals into another wavelength for transmission. A useful component OEO 3R converter is suggested to be used. The OEO converter is also known as transponder OEO. This component uses the Optical-Electrical-Optical principle to offer the conversion between different wavelengths of optical signals. “3R” means re-timing, re-shaping, and re-amplifying.


OEO 3R Converter for Wavelength Conversion

OEO 3R converter can fit various applications and can be installed in the network flexibly. It is a very popular component in DWDM and CWDM networks. In many situations, we are using fiber optic transceiver that working on 850nm, 1310nm and 1550nm for optical signal transmission. However, if you want to add optical signals of these wavelengths into a CWDM or DWDM network, you should firstly convert the wavelengths into CWDM or DWDM wavelengths. With OEO converter, this could be easy. The following picture shows a case which uses OEO converter in a CWDM network for wavelengths conversion.


In this case, a 10G SFP+ to SFP+ OEO with two SFP+ ports, is being used for wavelength conversion between 1310nm and CWDM wavelength 1610nm. A 10G-LR SFP+ module working on 1310nm is used in a 10G switch on site A. To add the optical signal of this port in to the existing CWDM network, this module is being connected to another 10G LR SFP+ module which is being inserted in the SFP+ Port 1 of the OEO converter. A CWDM 1610nm SFP+ module, connected to the CWDM MUX/DEMUX on site B, is being used in the other port of this OEO converter. The OEO converter the 1310nm signal into 1610nm CWDM signal. The optical signal from site A is being added into the CWDM network via the CWDM MUX/DEMUX on site B.

OEO 3R Converter for Fiber Mode Conversion and Fiber Repeating

The using of OEO converter for wavelength conversion is simple. As above mentioned, the OEO 3R converter has the function of re-timing, re-shaping, and re-amplifying, the OEO 3R converter can also be used as fiber mode converter and fiber repeater converters. The following picture shows another case with OEO 3R converter working as fiber repeater and providing conversion between single-mode and multimode.


In this case, three SFP+ to SFP+ OEO converters are deployed between Site A and Site B for long distance dual-way optical transmission. The optical signal from Site A is firstly converted from multi-mode fiber into single-mode fiber for 90km transmission by one OEO converter. Then, a second OEO converter is used as a repeater to “3R” the optical signals. After that, the single-mode signal will travel another 75km. Before the signal reaches the switch in Site B, another OEO converter converts the single-mode signal into multimode signal.

OEO Converter Options

OEO converters provide flexible solution for optical transmission network. Except the above mentioned 10G SFP+ to SFP+ OEO converter, there are many other OEO converters with different port types, port counts and designs. The following table listed several OEO converters for your reference.

SFP+ to SFP+ OEO Converter XFP to XFP OEO Converter
QSFP+ to QSFP+ OEO Converter 8 Ports SFP+ 10G OEO Converter

Optical divider and connector market strong demand

In many related policies, driven by large-scale light in to the copper retreat has unfolded, with FTTx substantive, ODN products becoming an important part of FTTx
system, may also be the expansion opportunity.

In line with the statistics, the proportion of ODN access equipment investment taken into account 50% ~ 60% of FTTx equipment investment.Could be predicted the years
in the future our country ODN access device how big the marketplace will keep growth trend in excess of 20%, to 2012, how large the marketplace is predicted to attain
14.55 billion yuan.ODN access products are usually made from optical divider, optical connector and also the equipments install these elements (housing, terminal box,
etc.).ODN core technology is mainly manifested within the optical divider, optical connector, passive optical components products.

Bypass the marketplace popular

PLC (planar optical waveguide technology) optical divider is primarily utilized in FTTH user access network, global curiosity about PLC optical divider in ’09 about
3300 wantong, annual rate of development of 32%.Global markets presents different pattern in various area, Japan, Columbia following a curiosity about high-speed
development for quite a while, has become approaching the gentle, demand is pretty stable, makes up about about 50 % from the share of the market;The outcome from the
economic crisis in the usa, influenced by a specific momentum;And developing countries for example China, India, Brazil’s FTTx a fast-growing construction phase, thus
end up being the main growth reason behind the marketplace.

Using the development of our country FTTx, planar optical waveguide technologies have get to be the growth and development of optical communication industry.PLC market
a hot, many are very bullish on passive optical device manufacturers, will be ready to mount the PLC program.Right now, the PLC in the leading manufacturers of optical
communication technology, rich and rich science, and science, etc.

PLC products around the massive in China telecom and China unicom bidding, driven by domestic PLC market, an order income growth is powerful.Through the 12th five-year
plan, operators will accelerate the FTTx network deployment, that will effectively promote the domestic market requirement for passive components, PLC products since
the core device of FTTx, will get a large amount of applications, inside the global share of the market is predicted to assist enhance.

PLC could be the core from the optical divider chip, the chip is essential to produce and manufacture.Recently, we’ve already had some light components enterprises
successfully on PLC chip encapsulation, most foreign enterprises also transfer chips to the country to encapsulate, these conditions to build up PLC optical divider
industry has built favorable conditions.

The connector has huge potential

Requirement of global optical connector in 2008 to 2008, increased by 11% in the year earlier, last year to a single.04 billion.The downstream applications for instance communication, optical network market demand growth, the influence of is anticipated to achieve 1.63 billion by 2012.

Global optical connector within the consumer market, the American companies are the largest.The oldest along with the future development potential may be the Asia Pacific markets.While using advancement of optical fiber cable technology increase the risk for optical fiber gets closer and nearer to the final outcome user, the shorter links, including board interconnection relating to the needs in the growing, thus promoted greatly rise in the quantity of the connector.

This season countries for the policy within the development and integration of optical communication industry will heighten the size the domestic market of optical fiber connector, promote the introduction of domestic optical fiber connector industry.Domestic industry restructuring and three g licensing as well as other factors to market regarding the optical communication network, the resulting including light to the copper back, “FTTx” and so on the most recent market demand, is a big market possibility of optical fiber connector.

Based on China electronics industry association information center, 2009, 280 million optical fiber connector in the domestic market demand, domestic optical fiber connector from 2010 to 2015 how large industry demand will probably be around 12.6% growth, demand will reach 2012, 410 million.As fiber optic broadband network large-scale construction start, therefore, three major telecom operators entry to the building construction is anticipated being orderly development of optical network, optical fiber connector market scale continuously grow.

(Related articles:DWDM Wiki,dwdm vs cwdm,oeo converter)