标签归档:data center

Data Center White Space and Gray Space

Nowadays, with the advent of the 5G era and the advancement of technology, more and more enterprises rely on IT for almost any choice. Therefore, their demand for better data center services has increased dramatically.

However, due to the higher capital and operating costs caused by the cluttered distribution of equipment in data centers, the space has become one of the biggest factors restricting data centers. In order to solve that problem, it’s necessary to optimize the utilization of existing space, for example, to consolidate white space and gray space in data centers.

What is data center white space?

Data center white space refers to the space where IT equipment and infrastructure are located. It includes servers, storage, network gear, racks, air conditioning units, power distribution systems.

White space is usually measured in square feet, ranging anywhere from a few hundred to a hundred thousand square feet. It can be either raised floor or hard floor (solid floor). Raised floors are developed to provide locations for power cabling, tracks for data cabling, cold air distribution systems for IT equipment cooling, etc. It can have access to all elements easily. Different from raised floors, cooling and cabling systems for hard floors are installed overhead. Today, there is a trend from raised floors to hard floors.

Typically, the white space area is the only productive area where an enterprise can utilize the data center space. Moreover, online activities like working from home have increased rapidly in recent years, especially due to the impact of COVID-19, which has increased business demand for data center white space. Therefore, the enterprise has to design data center white space with care.data center white space

What is data center gray space?

Different from data center white space, data center gray space refers to the space where back-end equipment is located. This includes switchgear, UPS, transformers, chillers, and generators.

The existence of gray space is to support the white space, therefore the amount of gray space in equipment is determined by the space assigned for data center white space. The more white space is needed, the more backend infrastructure is required to support it.data center gray space

How to improve the efficiency of space?

Building more data centers and consuming more energy is not a good option for IT organizations to make use of data center space. To increase data center sustainability and reduce energy costs, it’s necessary to use some strategies to combine data center white space and gray space, thus optimizing the efficiency of data center space.

White Space Efficiency Strategies

  • Virtualized technology: The technology of virtualization can integrate many virtual machines into physical machines, reducing physical hardware and saving lots of data center space. Virtualization management systems such as VMware and Hyper V can create a virtualized environment.
  • Cloud computing resources: With the help of the public cloud, enterprises can transfer data through the public internet, thus reducing their needs for physical servers and other IT infrastructure.
  • Data center planning: DCIM software, a kind of data center infrastructure management tool, can help estimate current and future power and server needs. It can also help data centers track and manage resources and optimize their size to save more space.
  • Monitor power and cooling capacity: In addition to the capacity planning about space, monitoring power, and cooling capacity is also necessary to properly configure equipment.

Gray Space Efficiency Strategies

  • State-of-art technologies: Technologies like flywheels can increase the power of the machine, reducing the number of batteries required for the power supply. Besides, the use of solar panels can reduce data center electricity bills. And water cooling can also help reduce the costs of cooling solutions.

Compared with white space efficiency techniques, grace space efficiency strategies are pretty less. However, the most efficient plan is to combine data center white space with gray space. By doing so, enterprises can realize the optimal utilization of data center space.

Article Source: Data Center White Space and Gray Space

Related Articles:

How to Utilize Data Center Space More Effectively?

What Is Data Center Virtualization?

Infographic – What Is a Data Center?

The Internet is where we store and receive a huge amount of information. Where is all the information stored? The answer is data centers. At its simplest, a data center is a dedicated place that organizations use to house their critical applications and data. Here is a short look into the basics of data centers. You will get to know the data center layout, the data pathway, and common types of data centers.

what is a data center

To know more about data centers, click here.

Article Source: Infographic – What Is a Data Center?

Related Articles:

What Is a Data Center?

Infographic — Evolution of Data Centers

Why Data Center Location Matters?

When it comes to data center design, location is a crucial aspect that no business can overlook. Where your data center is located matters a lot more than you might realize. In this article, we will walk you through the importance of data center location and factors you should keep in mind when choosing one.

The Importance of Data Center Location

Though data centers can be located anywhere with power and connectivity, the site selection can have a great impact on a wide range of aspects such as business uptime and cost control. Overall, a good data center location can better secure your data center and extend the life of data centers. Specifically, it means lower TCO, faster internet speed, higher productivity, and so on. Here we will discuss two typical aspects that are the major concerns of businesses.

Greater physical security

Data centers have extremely high security requirements, and once problems occur, normal operation will be affected. Of course, security and reliability can be improved by various means, such as building redundant systems, etc. However, reasonable planning of the physical location of a data center can also effectively avoid harm caused by natural disasters such as earthquakes, floods, fires and so on. If a data center is located in a risk zone that is prone to natural disasters, that would lead to longer downtime and more potential damages to infrastructure.

Higher speed and better performance

Where your data center is located can also affect your website’s speed and business performance. When a user visits a page on your website, their computer has to communicate with servers in your data center to access data or information they need. That data is then transferred from servers to their computer. If your data center is located far away from your users who initiate certain requests, information and data will have to travel longer distances. That will be a lengthy process for your users who could probably get frustrated with slow speeds and latency. The result is lost users leaving your site with no plans to come back. In a sense, a good location can make high speed and impressive business performance possible.

Choosing a Data Center Location — Key Factors

Choosing where to locate your data center requires balancing many different priorities. Here are some major considerations to help you get started.

key factors of choosing a data center location

Business Needs

First and foremost, the decision has to be made based on your business needs and market demands. Where are your users? Is the market promising in the location you are considering? You should always build your data center as close as possible to users you serve. It can shorten the time for users to obtain files and data and make for happy customers. For smaller companies that only operate in a specific region or country, it’s best to choose a nearby data center location. For companies that have much more complicated businesses, they may want to consider more locations or resort to third-party providers for more informed decisions.

Natural Disasters

Damages and losses caused by natural disasters are not something any data center can afford. These include big weather and geographical events such as hurricanes, tornadoes, floods, lightning and thunder, volcanoes, earthquakes, tsunamis, blizzards, hail, fires, and landslides. If your data center is in a risk zone, it is almost a matter of time before it falls victim to one. Conversely, a good location less susceptible to various disasters means a higher possibility of less downtime and better operation.

It is also necessary to analyze the climatic conditions of a data center location in order to select the most suitable cooling measures, thus reducing the TCO of running a data center. At the same time, you might want to set up a disaster recovery site that is far enough from the main site, so that it is almost impossible for any natural disaster to affect them at the same time.

Power Supply

The nature of data centers and requirements for quality and capacity determine that the power supply in a data center must be sufficient and stable. As power is the biggest cost of operating a data center, it is very important to choose a place where electricity is relatively cheap.

The factors we need to consider include:

Availability — You have to know the local power supply situation. At the same time, you need to check whether there are multiple mature power grids in alternative locations.

Cost — As we’ve mentioned, power costs a lot. So it is necessary to compare various power costs. That is to say, the amount of power should be viable and the cost of it should be low enough.

Alternative energy sources — You might also want to consider whether there are renewable energy sources such as solar energy, wind energy and air in alternative locations, which will help enterprises to build a greener corporate image.

It is necessary to make clear the local power supply reliability, electricity price, and policies concerning the trend of the power supply and market demand in the next few years.

Other Factors

There are a number of additional factors to consider. These include local data protection laws, tax structures, land policy, availability of suitable networking solutions, local infrastructure, the accessibility of a skilled labor pool, and other aspects. All these things combined can have a great impact on the TCO of your data center and your business performance. This means you will have to do enough research before making an informed decision.

There is no one right answer for the best place to build a data center. A lot of factors come into play, and you may have to weigh different priorities. But one thing is for sure: A good data center location is crucial to data center success.

Article Source: Why Data Center Location Matters?

Related Articles:

Data Center White Space and Gray Space

Five Ways to Ensure Data Center Physical Security

The Infrastructure Bill is all set to transform the Fiber Optic & Data Center Industry

In August 2021, the US Senate passed the Infrastructure Bill to revamp the dated setup responsible for latency issues and low connectivity in underserved rural communities. The bill’s passing has led to great excitement amongst various sectors, chief amongst them being the telecom industry. Here’s an overview of how the Infrastructure Bill will affect the fiber optics and Data Center sectors.

What is the Infrastructure Bill and what does it entail?

The recently approved Infrastructure Bill is set to make considerable headway in bridging the great digital divide: a decade-long problem afflicting some 40 million Americans. The Senate-passed bill of $1.2 trillion hopes to improve the aging American Infrastructure and boost various sectors via increased funding and jobs. $65 billion from this grant is exclusively allocated for enhanced internet experiences in underprivileged regions.

Low bandwidth internet has been creating a great digital divide in various American states for a long time. Communities on the underprivileged side of this divide have suffered from maladjustment in the new virtual norm. Poor connectivity for these communities has meant inefficiency in carrying out routine tasks, failure in maintaining uninterrupted workflows, and severed communications. Digital solutions that have become part and parcel of many Americans, such as e-learning, telehealth, etc., are still somewhat of an anomaly for these regions.

America needs a rejuvenated infrastructure that enables these communities with a secure, high-quality, and super-fast connection.

The bill’s passage is said to remove these barriers in the underserved regions. However, this will also call for a joint deliverance from all parties involved, including government bodies, the telecommunications industry, and the fiber optics/ data center sectors. These are major sectors poised to help America close the great digital divide and successfully make the virtual shift.

How will this bill affect the fiber optics and data center sector?

One of the major components of this project is the expansion of the internet infrastructure. This, along with effectively and efficiently building out in remote regions while eliminating inconsistent right-of-way rules, will result in adequate and speedy connections. There are many other complexities involved, but what the underprivileged communities, such as the Midwest, need most are 5G wireless services and robust fiber deployment.

Telecommunications and Data Center industries have always found infrastructure expansion difficult in places such as the Midwest due to natural physical barriers. These include the largely uneven landscape of mountains, roughly-cleared forests, and expanses of water. All of these have led to poor internet connections in these regions. Introducing the 5G wireless service can be a great way to overcome the handicaps of nature. But setting up these services would require vigorous fiber optic cable deployments and construction of powerful data centers.

The fiber optics sector is the chief component against which the entire digital network is buttressed. This is the network of speedy internet and empowered consumers who are facilitated 24/7 with high-quality, uninterrupted connections and modern digital services.

Modern digital services rely heavily on network densification and evolving technologies such as the blockchain, AI, and the IoT. Fiber optics is responsible for supporting most of these modernized services. Network densification is an efficient way to increase network capacity without requiring more rack space, but this also means constructing a large number of data centers in these areas.

To make the 5G technology work, the fiber optics industry will have to build data centers and cell towers in close proximity to eliminate latency problems through agile deployment. This 5G wireless fiber-based network of data centers will provide these remote regions with the resiliency and scaling needed to maintain critical speeds and higher bandwidths.

This kind of networking will also require all stakeholders, network enterprises, and local government bodies to work together and ensure that all populations can derive massive benefits from the revamped Infrastructure.

The federal government has already taken various initiatives to maximize funding for quicker broadband infrastructure deployment and more can be added to the allocated amount in the coming years. The National Digital Inclusion Alliance reported on the number of measures taken by the government to improve the digital literacy efforts and bring together pockets of communities via a compact digital resource network. As these state and federal-backed initiatives help overcome problems of connectivity caused by physical barriers, underserved populations will finally access reliable connectivity.

Some potential pitfalls to watch out for with the Infrastructure Bill

While there is a great buzz surrounding the opportunities and innovations stemming from the bill’s passing, there are some potential pitfalls that both governments and industry enterprises must look out for.

The prospect of billions in federal grants means that multiple telecommunication and fiber optics enterprises will be vying for the funds. If too many telecoms in one region get access to the federal grant, the result could be an overbuilding of the digital infrastructure. This may put an excessive burden on the electrical energy sector and cause other environmental hazards.

It is also feared that the grant will keep new tech companies at bay by providing already established tech enterprises access to rural areas. The result could be a stifling of innovations in broadband internet technology.

The future of fiber optics and datacenter sector post-Infrastructure Bill

The 5G fiber technology offers the fastest internet connectivity helping businesses set greater targets and achieve better results. With the release of grants from the federal government, the industry will undoubtedly expand to accommodate the growing need for innovative solutions.

According to one study, the fiber industry will grow at 8.5% in the coming years. By 2025, the fiber optics sector is estimated to become a seven billion-dollar industry.

Numerous cities plan for a fiber-based internet network to create what Wired news calls the “internet utopia”. An ambitious network provider has already planned for an 8000-mile long submarine underwater fiber optic cable connecting Los Angeles and Hong Kong to support the increasing demand for Google and Facebook.

There is a great buzz surrounding the expansion of the 5G wireless network and what it means for the great virtual shift in the country. It will not be long before we begin seeing the role of fiber optics and data centers in newer, modern, and diversified digital applications and devices accessible by all.

Article Source: The Infrastructure Bill is all set to transform the Fiber Optic & Data Center Industry

Related Articles:

5 Types of Optical Fibers for 5G Networks

What Is Data Center Security?

What Is a Containerized Data Center: Pros and Cons

The rise of the digital economy has promoted the rapid and vigorous development of industries like cloud computing, Internet of Things, and big data, which have put forward higher requirements for data centers. The drawbacks of traditional data centers have emerged gradually, which are increasingly unable to meet the needs of the market. The prefabricated containerized data center meets the current market demand and will usher in a period of rapid development.

What Is a Containerized Data Center?

A containerized data center comes equipped with data center infrastructures housed in a container. There are different types of containerized data centers, ranging from simple IT containers to comprehensive all-in-one systems integrating the entire physical IT infrastructure.

Generally, a containerized data center includes networking equipment, servers, cooling system, UPS, cable pathways, storage devices, lighting and physical security systems.

A Containerized Data Center
A Containerized Data Center

Pros of Containerized Data Centers

Portability & Durability

Containerized data centers are fabricated in a manufacturing facility and shipped to the end-user in containers. Due to the container appearance, they are flexible to move and cost-saving compared to traditional data centers. What’s more, containers are dustproof, waterproof, and shock-resistant, making containerized data centers suitable for various harsh environments.

Rapid Deployment

Unlike traditional data centers with limited flexibility and difficult management, containerized data centers are prefabricated and pretested at the factory, and are transported to the deployment site for direct set-up. With access to utility power, network and water, the data center can work well. Therefore, the on-site deployment period for containerized data centers is substantially shortened to 2~3 months, demonstrating rapid and flexible deployment.

Energy Efficiency

Containerized data centers are designed for energy efficiency, which effectively limits ongoing operational costs. They enable power and cooling systems to match capacity and workload well, improving work efficiency and reducing over-configuration. More specifically, containerized data centers adopt in-row cooling systems to deliver air to adjacent hotspots with strict airflow management, which greatly improves cold air utilization, saves space and electricity costs in the server room, and reduces power usage efficiency (PUE).

High Scalability

Because of its unique modular design, a containerized data center is easy to install and scale up. More data centers can be added to the modular architecture of containerized data centers according to the requirements to optimize the IT configuration in a data center. With high scalability, containerized data centers can meet the changing demands of the organization rapidly and effortlessly.

Cons of Containerized Data Centers

Limited Computing Performance: Although it contains the entire IT infrastructure, a containerized data center still lacks the same computing capability as a traditional data center.

Low Security: Isolated containerized data centers are more vulnerable to break-ins than data center buildings. And without numerous built-in redundancies, an entire containerized data center can be shut down by a single point of failure.

Lack of Availability: It is challenging and expensive to provide utilities and networks for containerized data centers placed in edge areas.

Conclusion

Despite some shortcomings, containerized data centers have obvious advantages over traditional data centers. From the perspective of both current short-term investment and future long-term operating costs, containerized data centers have become the future trend of data center construction at this stage.

Article Source: What Is a Containerized Data Center: Pros and Cons

Related Articles:

What Is a Data Center?

Micro Data Center and Edge Computing

Top 7 Data Center Management Challenges