MTP Conversion Cable and Its Usage

12-fiber MTP and 24-fiber MTP cables are widely used in 40G and 100G high density cabling. However, in many cases, not all the fibers are used. For instance, to connect a 40G-SR4 QSFP+ module, we usually use a 12-fiber MTP cable with only 8 fibers in use. If you have built a 24-fiber cabling system, you can use MTP conversion cable to make full use of the existing optical fibers.

MTP conversion cable

MTP Conversion Cable

Unlike MTP-LC harness cable, MTP conversion cables are terminated with MTP connectors on both ends. However, the MTP connectors on each end are different in fiber counts and types. MTP conversion cable can provide more possibilities for the existing 24-fiber cabling system. The following are the most commonly used MTP conversion cable:

1*2 MTP conversion cable 2*3 MTP conversion cable 1*3 MTP conversion cable
1*2 MTP conversion cable 2*3 MTP conversion cable 1*3 MTP conversion cable
24-Fiber MTP to 2*12-Fiber MTP 2*12-Fiber MTP to 3*8-Fiber MTP 24-Fiber MTP to 3*8-Fiber MTP
MTP Conversion Cable Application

The total fiber counts of the above three MTP conversion cables are all 24. But the can provide different connections in multi-fiber cabling system. The following will introduce the applications of these cables.

1*2 MTP Conversion Cable

This MTP conversion cable has one end terminated with a 24-fiber MTP connector and the other end terminated with two 12-fiber MTP connector. With this cable, two 12-fiber optical singles can be transferred on to a 24-fiber cable for transmission. In multimode cabling system, the optical signals of two 40G-SR4 QSFP+ modules can be transmitted over a single 24-fiber MTP cable as shown in the following picture.

1*2 MTP conversion cable
1*3 MTP Conversion Cable

1*3 MTP conversion cable has one 24-fiber MTP connector terminated on one end and three 8-fiber MTP connector one the other end. The 8-fiber MTP connectors can be connected to 40G-SR4 QSFP+ modules. This MTP conversion cable utilizes 100% of the existing 24 optical fibers. Each fiber can be used to transmit 10G optical data. Three 40G dual-way transmissions can be achieved on the existing 24-fiber MTP cable. It can also be used to breakout the 120G CXP module signals into three 40G QSFP+ SR4 optical signals.

1*3 MTP conversion cable
2*3 MTP Conversion Cable

2*3 MTP conversion cable is terminated with two 12-fiber MTP connectors and three 8-fiber MTP connectors. This MTP conversion cable allows three 40G-SR4 optical signal transmit on the existing two 12-fiber MTP trunk cables as shown in the following. If you have built a 12-fiber MTP cabling system. This 2*3 MTP conversion cable can increase about 30% capacity of the existing network.

2*3 MTP conversion cable

MTP Conversion Cable Selection

MTP conversion cables are designed to provide a more flexible multi-fiber cabling system based on MTP products. It can largely increase the capacity of the existing 12-fiber and 24-fiber MTP network. The above mentioned MTP conversion cable in different fiber types and cable lengths. Kindly contact for more details if you are interested.

Optical Line Protection System

Increasing the stability and reliability of the optical network is really important to our optical network. However, problems like optical fiber faults and line interruption are the largest risks that affect the communication and services that carried by optical fibers. To minimized the affection by these problems, optical line protection (OLP) systems are usually built in today’s optical networks, especially for backbone and important business line. Optical line protection uses principle of optical switch to build a backup path on vacant optical fiber. A simple optical line protection should contain a main path and a secondary path.

optical line protection

OLP 1:1 and OLP 1+1

There are different types of optical line protection devices for network protection. The most commonly used OLP are OLP 1:1 and OLP 1+1. Both of them require a spare fiber optic path. But they use different methods to secure the optical communication networks.

The following picture shows the transmission method of a fiber network deployed with OLP 1:1. The 1:1 optical line protection system uses a selective transmitting and selective receiving mode. There are a main route and a standby route between the two sites. The Tx port is connected to the optical switch inside the OLP device. When there is a fault on the main route, the Rx port will detect the decreasing of the optical power. Then, this OLP 1:1 system will switch the transmitting and receiving businesses from the main route to the standby route. 1:1 OLP system has low insertion loss and support the monitoring of the backup path. In this OLP system the optical fiber for backup path can be used for other business.

OLP 1:1

For OLP 1+1, things will be different as shown in the following picture. OLP 1+1 system chooses a mode of dual transmitting and selective receiving. In OLP 1+1, the optical power from Tx are splitted with a split ratio of 50:50 on the main route and the standby route, which means both the main and standby routes are in use no matter whether there is a fault in the main route. While for Rx, the optical signal with better quality will be selected. The advantage of OLP 1+1 system is fast switching and low cost. However, there will be larger insertion loss compared with OLP 1:1 system. This OLP 1+1 system is suggested to be used with short-distance optical lines with large surplus.

OLP 1+1

OBP (Optical Bypass Protection)

The OLP 1+1 and OLP 1:1 are used to ensure the optical transmission when there are faults in optical fibers. However, some problems of the optical networks are caused by devices that are deployed in the optical network, which will affect the transmission in the whole link. To increase the stability in this situation, optical bypass protection devices are deployed in the network. The following picture shows how the bypass protection device protect the optical line from normal to barrier situation. When there is no optical signal of the device or power down occurs, it will automatically bypass the device, so as to ensure the normal communication.

optical bypass protection

OLP and OBP Solution

The OLP and OBP systems are both economical solutions to secure our optical network. There are mainly two designs of these devices—plug-in card version and standalone version. The following listed several OLP and OBP for your references.

ID Product Description
66007 Optical Line Protection (OLP) 1:1, 1U Rack Mount
66008 Optical Line Protection (OLP) 1+1, 1U Rack Mount
66009 Optical Line Protection (OLP) 1:1, Plug-in Card Type
66010 Optical Line Protection (OLP) 1+1, Plug-in Card Type
66011 Optical Bypass Protection (OBP), 1U Rack Mount
66012 Optical Bypass Protection (OBP), Plug-in Card Type

OEO 3R Converter Instruction

Optical signals are transmitted on specific wavelengths like 850nm, 1310nm, 1550nm and CWDM wavelengths and DWDM wavelengths. In some cases, it occurs that you need to converter a wavelength of optical signals into another wavelength for transmission. A useful component OEO 3R converter is suggested to be used. The OEO converter is also known as transponder OEO. This component uses the Optical-Electrical-Optical principle to offer the conversion between different wavelengths of optical signals. “3R” means re-timing, re-shaping, and re-amplifying.


OEO 3R Converter for Wavelength Conversion

OEO 3R converter can fit various applications and can be installed in the network flexibly. It is a very popular component in DWDM and CWDM networks. In many situations, we are using fiber optic transceiver that working on 850nm, 1310nm and 1550nm for optical signal transmission. However, if you want to add optical signals of these wavelengths into a CWDM or DWDM network, you should firstly convert the wavelengths into CWDM or DWDM wavelengths. With OEO converter, this could be easy. The following picture shows a case which uses OEO converter in a CWDM network for wavelengths conversion.


In this case, a 10G SFP+ to SFP+ OEO with two SFP+ ports, is being used for wavelength conversion between 1310nm and CWDM wavelength 1610nm. A 10G-LR SFP+ module working on 1310nm is used in a 10G switch on site A. To add the optical signal of this port in to the existing CWDM network, this module is being connected to another 10G LR SFP+ module which is being inserted in the SFP+ Port 1 of the OEO converter. A CWDM 1610nm SFP+ module, connected to the CWDM MUX/DEMUX on site B, is being used in the other port of this OEO converter. The OEO converter the 1310nm signal into 1610nm CWDM signal. The optical signal from site A is being added into the CWDM network via the CWDM MUX/DEMUX on site B.

OEO 3R Converter for Fiber Mode Conversion and Fiber Repeating

The using of OEO converter for wavelength conversion is simple. As above mentioned, the OEO 3R converter has the function of re-timing, re-shaping, and re-amplifying, the OEO 3R converter can also be used as fiber mode converter and fiber repeater converters. The following picture shows another case with OEO 3R converter working as fiber repeater and providing conversion between single-mode and multimode.


In this case, three SFP+ to SFP+ OEO converters are deployed between Site A and Site B for long distance dual-way optical transmission. The optical signal from Site A is firstly converted from multi-mode fiber into single-mode fiber for 90km transmission by one OEO converter. Then, a second OEO converter is used as a repeater to “3R” the optical signals. After that, the single-mode signal will travel another 75km. Before the signal reaches the switch in Site B, another OEO converter converts the single-mode signal into multimode signal.

OEO Converter Options

OEO converters provide flexible solution for optical transmission network. Except the above mentioned 10G SFP+ to SFP+ OEO converter, there are many other OEO converters with different port types, port counts and designs. The following table listed several OEO converters for your reference.

SFP+ to SFP+ OEO Converter XFP to XFP OEO Converter
QSFP+ to QSFP+ OEO Converter 8 Ports SFP+ 10G OEO Converter

100G Switch Price and Configuration

There is no doubt that the time of 100G is coming. Except the professional companies like Cisco, Juniper network and Dell, large company like Facebook and Linkedin have also designed their own “super power” 100G switches. And there are many vendors provide white box switches wanting to share the cake of 100G switch market. This post offers a simple analysis of the 100G switch price and configuration on that provided by the market.

100G QSFP28 Port Is Popular for 100G Switch

100G switch price varies mainly according to different brand and capacities. If you are selecting a 100G switch, it will be easy to figure out that most 100G switches are designed with 100G QSFP28 port. For example, some popular 100G switch like Cisco Nexus 3232C, Arista 7060CX-32 and Juniper QFX10002 are all equipped with 100G QSFP28 ports. This is because 100G QSFP28 modules have higher density and low power consumptions compared with other 100G QSFP28 modules. And QSFP28 modules can fit a variety of cabling systems.

Configuration and Price of 100G Switch

The port type on the switch usually determines its function in network. Here introduces several popular 1U 100G switch for your reference.

Cisco Nexus 3232C Switch

Cisco Nexus 3232C switch is a 1U 100G switch with 32 QSFP28 ports supporting a maximum of 128 x 25G ports. Another great feature of this switch is each QSFP28 port on Cisco Nexus 3232C can be operated at 10, 25, 40, and 100 Gbps. The QSFP28 fiber optic transceiver, AOC and DAC can work on these QSFP28 port.

Arista 7060CX-32 Switch

Another switch provide by Arista has the capacities at the same level as Cisco Nexus 3232C switch is Arista 7060CX-32 switch. Each 100G port on Arista 7060CX-32 can also support transmission data rate of 10, 25, 40, and 100G. This switch also has another two SFP+ ports.

Arista 100g switch
100G White Box Switch

The 100G switch prices of big vendors are usually very expensive. The price of the above mentioned two 1U switches are around $ 30,000 which is not affordable for many enterprises. That’s why 100G white box switch is becoming gradually popular. Unlike Cisco switch, the software of white box switch is separated from the switch. The price of 100G white box switch is much lower than the brand ones. They can be customized to meet specific requirements for networking and business. The following is a 100G white box (S5850-48S2Q4C) which has 48 SFP+ ports, 2 QSFP+ ports and 4 QSFP28 ports, which is provided FS.COM.

100G switch

The price of the 100G switch is around $8,800, which is much lower compared with Cisco switch at the same capacity level. Compatible 10G, 40G and 100G modules are also available in FS.COM.

100G QSFP28 switch

Compatible 100G QSFP28 Modules

If you are selecting a 100G QSFP28 switch, you will need 100G QSFP28 modules. To accomplish the 100G connections via QSFP28 port, there is a wide range of selections. For longer transmission distance, single-mode 100G QSFP28 modules are suggested. For short distance applications, 100G QSFP28 multimode module, AOC and DAC are suggested. The following table shows the generic 100G QSFP28 modules (compatible with FS.COM 100G switch) and the Cisco compatible 100G QSFP28 modules for your reference.

Generic 100G QSFP28 Cisco Compatible 100G QSFP28

Which Tight Buffered Fiber Distribution Cable Fits Your Application?

Optical fibers with fiber counts ranging from 2 to 144 counts or more are usually coated together inside a single strand of fiber optic cable for better protection and cabling. Multi-fiber optic cables are usually required to pass a lot of distribution points. And each individual optical fiber should connect only one specific optical interface via splicing or terminating by connectors. Thus, fiber optic cables used for distribution should be durable and easy to be terminated. Tight buffered fiber distribution cables, which meet these demands, are widely used in today’s indoor and outdoor applications, like data center and FTTH projects. This post will introduce tight buffered fiber distribution cables.

tight buffered fiber cable

The Beauty of 900um Tight Buffered Fibers

Most of tight buffered fiber distribution cables are designed with 900um tight buffered fibers. This is decided by its applications. As the above mentioned, the distribution cable should be durable and easy to be terminated. The following picture shows the difference between 250um bare fiber and 900um tight buffered fiber. They are alike, but the tight buffered fiber has an additional buffer layer. Compared with bare fibers, 900um tight buffered fibers can provide better protection for the fiber cores. 900um tight buffered fibers are easy to be stripped for splicing and termination. In addition, tight buffered fiber cables are usually small in package and flexible during cabling. These are the main reasons why a lot of fiber optic distribution cables use tight buffered design.

250um vs 950um

Choose Tight Buffered Distribution Fiber Cables According to Applications

900nm tight buffered distribution fiber cables also come in a variety of types. Tight buffered distribution fiber cables used for different environments and applications might have different fiber types, outer jackets and cable structures. The following will introduce several tight buffered distribution fiber cables for your reference.

unitized distribution fiber cable
Indoor Tight Buffered Distribution Fiber Cable

Tight buffered distribution fiber cables used for indoor applications are usually used for intra building backbones and routing between telecommunication rooms. Large tight buffered fiber cable with fiber counts more than 36 fibers generally has “sub-unit” (unitized) design (shown in the above). While smaller tight buffered distribution cables, with fiber counts of 6, 12 or 24, usually have “single-jacket” (non-unitized) designs, which are more flexible in cabling and have much smaller packages and cost advantages. The lower count tight buffered distribution fiber cables with color coded 12 fibers and 24 fibers are very popular. The following picture shows a 24-fiber indoor tight buffered distribution fiber cable with single-jacket design.

24-fiber tight buffered fiber cable

During practical use, these 6, 12 or 24-fiber indoor tight buffered distribution fiber cables can be spliced with other fibers or be terminated with fiber optic connectors. And they can be made into multi-fiber optic pigtails or fiber patch cable after terminated with fiber optic connector on one end or two end. The color coded fibers can also ease fiber cabling.

Indoor/Outdoor Armored Tight Buffered Distribtight buffered fiber terminationution Fiber Cable

Although tight buffered distribution fiber cables are usually used for indoor applications, there is still a place for them in outdoor applications after added with a layer of metal armored tube inside the cable. Armored fiber cables are durable, rodent-proof, water proof and can be directly buried underground during installation, which saves a lot of time and money.

Armored tight buffered distribution fiber cable

Here we strongly recommend a low fiber count armored tight buffered distribution fiber cable which can be used for both indoor and outdoor applications (show in the above picture). This low fiber count armored tight buffered cable has a single-jacket design with a steel armored tape inside the cable. It can be used for both backbone cabling and horizontal cabling in indoor environments. And it can also be used for direct buried applications and aerial application in outdoor environments.

FS.COM Same Day Shipping Tight Buffered Distribution Fiber Cables Solution

During the purchasing of fiber optic cables, one of the most important thing is the shipment of fiber cables. Many bulk fiber cables are transmitted via shipping, which might take a long time. Now FS.COM customers in the USA can enjoy same day shipping for tight buffered distribution fiber cables for both indoor and outdoor applications. Details are shown in the following table. Kindly contact for more details, if you are interested.

Part No. Description
31909 12 Fibers OM3 Plenum, FRP Strength Member, Non-unitized, Tight-Buffered Distribution Indoor Fiber Optical Cable GJPFJV
31922 12 Fibers OM4 Plenum, FRP Strength Member, Non-unitized, Tight-Buffered Distribution Indoor Fiber Optical Cable GJPFJV
31866 24 Fibers OM4 Riser, FRP Strength Member, Non-unitized, Tight-Buffered Distribution Indoor Fiber Optical Cable GJPFJV
51308 24 Fibers OS2, LSZH, Single-Armored Double-Jacket, Tight-Buffered Distribution Waterproof Indoor/Outdoor Cable GJFZY53