Category Archives: Fiber Patch Cable

10G SFP+ Transceiver Modules and Patch Cords Selection Guide

10G connection in telecommunication network is gradually moving from the backbone to layer 2 and layer 3. Both technology and market of 10G SFP+ transceiver modules are mature: the 10G transceiver modules have advanced from XENPAK which is the first generation of 10G transceiver to SFP+ which is now the most popular 10G optics. In addition, the price of 10G modules is getting lower. 10G modules are becoming affordable. Some genius guys even buy 10 SFP+ modules online to DIY private point to point 10G network. This article will offer basic information about 10G SFP+ transceiver modules and their connection instructions.

Basic of 10G SFP+ Transceiver Module

10G SFP+ transceiver has the same form factor of Gigabit SFP transceiver. Thus, many 10G modules can support 1/10G data rate to increase its flexibility during practical using. A SFP+ transceiver usually has two LC ports (as shown in the following picture). While 10G BiDi SFP+ transceiver, which transmitting and receiving signals from the same fiber optic cable, only has one LC port.

10G SFP+ transceiver and duplex patch cable

Except fiber optical transceivers, there are also various factory terminated copper-based or fiber optic based cables which are terminated with a SFP+ module on each end of the cable. There are mainly three types of these 10G cables: 10G SFP+ passive direct attached copper cable, 10G active direct attached copper cable and 10G SFP+ active optical cable. These 10G SFP+ cables eliminate the used of additional patch cable and can be directly plugged into the 10G SFP+ ports on switches. It is acceptable that these cables are an cost-effective and reliable solutions for 10G connections in short distance.

Optical Standards of 10G SFP+ Transceiver

According to IEEE standards, there are a variety 10GBASE SFP+ transceivers. For short distance transmission, 10GBASE-SR SFP+ and 10GBASE-LRM SFP+ can support transmission distance up to 300 meters and 220 meters over multimode fiber optic cables separately. 10GBASE-SR SFP+ modules is the most commonly used transceiver for short distance. It is suggested to work over wavelength of 850 nm.

There are a lot of 10G SFP+ transceivers that support long distance, like 10GBASE-LR SFP+, 10GBASE-ER SFP+, 10GBASE-ZR SFP+, CWDM SFP+, DWDM SFP+, BiDi SFP+, etc. These transceivers can support transmission distances ranging from 10 km to 120 km over single-mode fiber optic cables.

There is another special type of 10G transceivers which has been mentioned in this post, which is known as dual-rate SFP+. For example, dual-rate 1000BASE-LX and 10GBASE-LR SFP+ transceiver can be adjusted to support both 1G and 10G data rate up to 10 km over wavelength of 1310 nm.

10G BiDi SFP+ and simplex patch cable

Fiber Patch Cable Selection Guide for 10G SFP+ Transceivers

As 10G SFP+ DAC and AOC eliminate the using of additional patch cords. This part will introduce the selection guide for 10G SFP+ transceivers. During the selection of fiber optic patch cables for 10G SFP+ transceivers, the transmission distance is the first element to be considered. Single-mode patch cable is used for long distance transmission and multimode is designed for short distance transmission. Then the ports on the transceiver for receiving and transmitting should be considered. As mentioned, most 10G transceiver use duplex LC port, while BiDi SFP+ use simplex port (as shown in the above picture). Thus, simplex LC patch cords or duplex LC patch cords are used according to the port type on the transceiver. The following chart introduces detailed cabling information for 10G SFP+ transceivers.

10G SFP+ Transceivers Cabling Solution
Optical Standards Cable Type Distance
10GBASE-SR SFP+ LC duplex, MM 300 m
10GBASE-LRM SFP+ LC duplex, MM 200 m
10GBASE-LR SFP+ LC duplex, SM 10 km
10GBASE-ER SFP+ LC duplex, SM 40 km
10GBASE-ZR SFP+ LC duplex, SM 80 km
10GBASE-BX SFP+ LC simplex, SM 80 km
CWDM SFP+ LC duplex, SM 120 km
DWDM SFP+ LC duplex, SM 80 km
Dual-Rate 1000BASE-LX/10GBASE-LR LC duplex, SM 10 km
Dual-Rate 1000BASE-SX/10GBASE-SR LC duplex, MM 300 m

This post just introduced the basic information of 10G optics and cabling information. For more specific information, please visit FS.COM, where you can find a variety of 10G SFP+ optics modules.

Commonly Used Fiber Optic Cleaners

As cleanliness of the interfaces in fiber optic networks can directly affect the transmission quality, fiber optic cleaning is a must-have process during fiber optic network installation, testing and maintenance. You should always keep it in mind. You need to clean the fiber optic interface on the test equipment and fiber optic connectors before you actually doing the test. You need to clean the fiber optic connector or interfaces regularly in your daily maintenance. Various fiber optic cleaning methods are created. No matter you use dry cleaning or wet cleaning, basic tools are needed. However, we might be confused during the selecting of the fiber optic cleaning tools, cause there are so many different kinds of fiber optic connectors, interfaces and working environments. This post is to introduce the most commonly used fiber optic cleaners for different kinds fiber optic connectors.

One-Push Fiber Optic Cleaner

One-push fiber optic cleaner is one of the most popular fiber optic cleaner which eliminate the use of alcohol or solvents. Thus, it can save time efficiently with excellent performance. I would like to call it “Click and Cleaned”. Here I will introduce how to used one push fiber optic cleaner firstly.

The following picture is the top of an one-push connector, the cleaning tip of the cleaner is covered with a guide cap for fiber optic connectors. A cover is on the top of the guide cap, which can provide protection to the cleaning tip combining with the guide cap.

LC top

If you need to clean a fiber optic connector, the guide cap plays the function of a fiber optic adapter. Insert the cleaning tip into the connector with the guide cap as shown in the following picture, and press the cleaner until you hear a click. Then a cleaning is done by fiber optic cleaner.
LC cleaning

If you need to clean a fiber optic adapter, you should firstly remove the whole guide cap on the one-push cleaner. Then insert the cleaning tip into the adapter as shown in the following picture. Just by simple pressing, until you hear the click, a cleaning for a fiber optic adapter is done. It is very useful during test, cause the test equipment usually have an interface of adapter.

Adapter cleaning

Different types of connectors might have ferrules of different sizes. Thus, there are also accordance fiber optic cleaners for various connectors. Introduces several popular one-push fiber optic cleaners for different connectors.

One-Push Cleaner for LC/MU 1.25mm Ferrules

1.25mm ferrules

  • Price: $35.00
  • Item Part Number: ATC-NE-E1
  • Package Form: One-push cleaner
  • Target Use: LC, MU
  • Cleaning Times: Over 750 times per unit

One-Push Cleaner for SC/ST/FC 2.5mm Ferrules

2.5mm ferrules

  • Price: $35.00
  • Item Part Number: ATC-NE-E3
  • Package Form: One-push cleaner
  • Target Use: SC, ST, FC, LSH
  • Cleaning Times: Over 750 times per unit

One-Push Cleaner for MTP/MPO Connector

MTP MPO cleaner

  • Price: $45.00
  • Item Part Number: ATC-NE-M1
  • Package Form: One-push cleaner
  • Target Use: MTP/MPO
  • Cleaning Times: Over 600 times per unit
Reel-Type Fiber Optic Cleaner

Reel-type fiber optic cleaner contains a refillable lint free reel of cloth that is moved after each cleaning, always presenting a clean surface. Reel-type fiber optic cleaners come in different package forms, but most of them are cassette form.

This type of fiber optic cleaner is able to clean a wide rage of fiber optic connectors, which also avoid the using of alcohol or solvents. The following shows the basic structure of a reel-type fiber optic cleaner and its replacement tape. The cleaning with this cleaner is also very simple. Firstly depress lever to expose cleaning slot and cloth. Second, slide the connector end face gently. Third, keep connector perpendicular to cleaning surface. Then a cleaning is done.

reel type cleaner fiber optic cleaners

CLE-BOX Fiber Optic Cassette Cleaner for LC/MU/SC/FC/ST/MPO/MTRJ

  • Price: $19.00
  • Item Part Number: FOCC-301
  • Package Form: Cassette cleaner
  • Target Use: LC, SC, FC, ST, MU, D4, DIN Connector
  • Cleaning Times: Over 500 times per unit

Replacement Tape for CLE-BOX Fiber Optic Cassette Cleaner

  • Price: $14.00
  • Item Part Number: FCRS-301
  • Package Form: Cassette cleaner
  • Target Use: Replace tape for cassette cleaner
  • Cleaning Times: Over 500 times per unit

The above mentioned fiber optic cleaners are just a small part of the cleaning product family and are generally for dry cleaning. Kindly visit FS.COM or contact sales@fs.com for more details about the wet cleaning for other fiber optic cleaning products.

Fanout Assemblies in 40G Interconnection

40G transmission is very common in the backbone network now. However, not all the devices and network are upgraded to 40G. To adapting the network between devices and network of different data rate. It is necessary to connection 40G devices to 10G devices for network interconnection. To solve this problem, fanout technology is be accepted and widely used in data center. Fanout products for interconnection is easy to understand. It’s kind of like the water pipeline in our building: water is transferred from the trunk pipeline in a building. Then trunk pipeline fans out into several pipelines that have smaller diameters to bring the water to every house. This post will introduce several Fanout products that are commonly used for 40G data center interconnection.

40G MPO Fanout Cables

The first fanout component is 40G MPO fanout cable, also called breakout cable or harness cable. MPO fanout cable is a multi-fiber optical cable with one end terminated with a male/female MPO connector and the other end attached with several LC connectors. Actually, there are various types of MPO fanout cables, according to connector type, cable length and cable type. But they all have the similar structure. Here will introduce three most popular MPO fanout cables according to the package type.

MPO-8LC fanout cable

The first one to be introduced is also what most customer need. This cable is fan out into 12 fibers or 24 fibers. The above picture shows a typical 12-fiber MPO harness cable. The MPO connector of this fanout cable is linked to 6 duplex LC connectors, which is really useful for backbone cabling from 40G devices to 10G devices.
The second one is a little bit smaller version of the former. The fibers are fanout directly from the MPO connectors. With small size, this kind of mini MPO harness cable can be easily put into patch panel and increase the cabling density largely and effectively.

12-fiber MPO cassette

The third to be introduced is a special one—MPO cassette. Literally, it looks like a cassette and looks very different from other MPO fanout cables. However, when you look inside the cassette, it has not much difference from other MPO fanout cables. MPO Cassette actually contains one or several mini MPO fanout cables in side the cassette, which is designed for those who want have everything in clean and tidy status. As it can be installed in a standard rack and the cables are all well protected. A 12-fiber MPO cassette usually has a 12-fiber mini MPO fanout cable in side the cassette, with a MPO connector on the backside and 12 LC connector in the front. For a 24-fiber MPO cassette, there could be a 24-fiber fanout cable or two 12-fiber cables inside. The following picture is a MPO cassette with two 12-fiber MPO fanout cable inside it, thus there are two MPO connector on its backside.

24-fiber MPO cassette with two 12-fiber MPO fanout inside

40G Fanout Direct Attach Cables

To decrease the 40G interconnection cost, Direct attach cable (DAC) is being widely used. There are also fanout versions of 40G DAC which support 40G to 10G cabling. These kind of 40G DAC usually have one QSFP+ connector on one end and four SFP+/XFP connectors or several LC connectors at the other end. For example, the following is 40G QSFP+ to 8 LC DAC. The QSFP+ connector of it can be used to plug in the 40G device which has QSFP+ port. On the other end, the four duplex LC connectors are used to separately connect four SFP+ transceivers , which are used to plug in 10G devices with SFP+ switched (shown in the following picture). If you used a 40G QSFP+ to 4 SFP+ DAC, this process would be easier, cause the SFP+ connector can be plugged into the SFP+ switch directly.

QSFP-8LC AOC for 40G to 10G cabling

Conclusion

All in all, fanout technology plays an important role in the 40G data center for both connecting devices supporting different data rate and distribution. Most fanout products are factory pre-terminated. The installation and maintenance doesn’t need many skills. In Fiberstore, a variety of fanout products of high quality and reliability can be customized according to your application. If you are seeking for solutions for fanout product, please feel free to contact sales@fs.com for more details.

Cabling With High Density Push-Pull Tab Patch Cords

It is inevitable to plug fiber patch cables from the patch panels, switches or cassettes in today’s data center cabling. However, this simple movement becomes harder and harder nowadays. Why? Both the data rate of every optical fiber and the fiber counts being used are increased to support high data rate up to 40/100G or more. Thus, the cabling density increased largely with the deployment of 40/100G Ethernet network. Finger access to every patch cable that is loaded on the patch panel, switches or cassettes becomes difficult. Especially for these patch cables in the middle of the space.

For fiber patch cords attached with connectors like LC, things become more complex. Because this type of connectors are usually locked in the port with a latch on the connector body. If you want to plug out a patch cord with LC connectors, you should firstly unlock the connector from the port by clicking the latch with is with small size (shown in the following picture). Usually an external tool is used to unplug the specific connector in a high density cabling. It seems a problem doesn’t matter much in the whole cabling. However, during practical cabling, network engineer could be headache about this annoying problem. To find an easy and elegant way to solve this finger access problem, a new type of patch cords was invented, which is designed for high density cabling and is known as push-pull tab patch cords.

finger access for high-density cabling

What Is High Density Push-pull Tab Fiber Patch cable?

Compare with the traditional patch cords. This new type patch cord is attached with a connector with a push-pull tab, which can perfectly solve the fiber access problem in high density cabling. Except the additional tab for pushing and pull, these connectors don’t change much from the traditional ones that attached to patch cords. But this little change makes a great difference. The following is offering you the details about this novel product.

High density push-pull tab fiber patch cords are usually attached with LC or MPO connectors, as these two types of connector are currently the most popular in high density cabling like 40G, 100G, 120G or more. The following pictures shows the details of these two types of connectors with push-pull tab.

The one in the left of the following picture is an LC connector attached on push-pull tab patch cable. It’s of standard LC size. When the tab is pulled the LC connector would be unlocked from the port easily, cause the tab is linked to the latch of the LC connector. Once the LC connector is unlocked, the patch cords would be smoothly plugged out from the port and other patch cords around it by pulling the tab slightly. As for MPO connector with push-pull tab shown in the following picture on the right side. Finger access becomes easier. The tab can greatly simplify the use of MPO connectivity when manual access to the release slider and rear portion of the connector is restricted. In this way, easy insertion and extraction of MPO patch cords can be achieved.

push-pull tab patch cords connectors

Get More From Push-pull Tab Patch Cable

Is finger access the only advantage of push-pull tab patch cords. Definitely NO. The following illustrating will surely make you exciting about push-pull tab patch cable.

  • Flexibility and adjustability: it has been proved that push-pull tab can increase the cabling density by 30% to 50%, which can satisfy the future high density cabling requirements for 120G or more.
  • Reliability: To reach the specific connector you want, you might loosen or remove other connectors around it, which can highly increase the reliability of the network.
  • Cost-save and time-save: it is clear that with push-pull tab patch cords, cabling becomes easy and elegant with higher ROI.
Fiberstore Push-Pull Tab Fiber Patch Cable Solutions

If you are looking for a simple and easy high density patch cabling solution, push-pull tab patch cords provided by Fiberstore can satisfy your requirements. The following chart is the most common applications of push-pull tab patch cords for your references.

Application Patch Cords Cable Type Connectors on Both Ends
10G to 10G Cabling Duplex LC Push-pull Tab Patch Cord OM3/OM4/Single-mode Duplex LC Duplex LC
40G to 40G Cabling 12-fiber MPO Push-pull Tab Trunk Cable OM3/OM4/Single-mode MPO (male/female) MPO (male/female)
40G to 10G Cabling 12-fiber MPO to 8 LC Push-pull Tab Break out Cable OM3/OM4/Single-mode MPO (male/female) 4 Duplex LC
100G to 100G Cabling 24-fiber MPO Push-pull Tab Trunk Cable OM3/OM4/Single-mode MPO (male/female) MPO (male/female)

For more details and customized solution of push-pull tab patch cords, you can always access Fiberstore by FS.COM or emailing us at sales@fs.com

How to Select the Right Fiber Patch Cable for 40G QSFP+ Transceiver?

It is clear that most servers in data center can support Ethernet transmission of 40G, and 40G QSFP+ transceivers are considered to be the most economical solution for 40G transmission in data center. However, to make all these devices run normally and effectively, fiber patch cables must be used to connect the fiber optic transceivers which are plugged in Ethernet switches shown in the following picture. As the structure of 40G transmission is more complex than ever, the select of patch cords for 40G transceiver becomes more difficult. This article will focus on how to select the proper patch cords for 40G QSFP+ transceivers in details.

switch connection

Numerous things need to be taken into consideration for proper selecting the fiber patch cables for 40G QSFP+ transceivers in practical cabling. However, several factors should always be considered: the cable type of the patch cords, the connector attached on the ends of the patch cords, and the ports of the switches that need to be connected.

For the first factor to be considered is cable type. This is because of the transmission characteristic optical signals of the fiber optic. Optical signals performs different over different wavelength. And optical signals with the same wavelength performs totally different when they run through different types of cables.

A question that people might come across can illustrate the above point well. Can a 40GBASE universal QSFP+ transceiver working on wavelength of 850nm be used with OM1 patch cords? Usually, signals with wavelength of 850nm are transmitted over short distance. Thus selecting a multimode fiber patch cords would be more economical. However, OM1 patch cords, which are ususally suggested for 100Mb/s and 1000Mb/s, cannot support 40G transmission and the quality of the 40G transmission is bad. This is because the transmission distance reduced as the data rate raised. For this case, OM3 and OM4—the optimized multimode fiber optic cables for 40G transmission in short distance are suggested. OM3 can support 40G transmission up to 100 meters and OM4 can support 40G transmission up to 150 meters.

The second aspect should be considered is the connector type that attached on the both ends of the patch cords. It usually decided by the interface of the 40G transceivers. Usually 40G QSFP+ transceivers for short distance are armed with MPO interface and for long transmission distance up to 10 km usually employ LC interface. However, there are several 40G QSFP+ transceivers do not follow this rule, like 40GBASE-PLR4 and 40GBASE-PLRL4. These transceiver with MPO interface can support transmission over long distance. The biggest characteristics of MPO connector is high density which seems perfectly satisfy the requirement of 40G transmission. However, for this kind of connect, the polarity becomes complex. Thus during the selecting of this types of patch cords. The polarity must be considered. For your reference, here offers another article which is informative about MPO polarity—”Understanding Polarity in MPO System”. The following pictures shows the commonly used 40G transceivers with MPO or LC interfaces.

QSFP+ transceivers

The third importance factors is the switch ports which is closely related to the applications. During the practical cabling, two situations are common. One is 40G QSFP+ to 40G QSFP+ cabling and the other is 40G QSFP+ to 10G SFP+ cabling.

For 40G QSFP+ to 40G QSFP+ cabling: for distance up to 100m, the 40GBASE-SR4 QSFP+ transceiver can be used with OM3 fiber patch cable attached with a MPO one each end. For distance up to 150m, the 40GBASE-SR4 QSFP+ transceiver can be used with OM4 fiber patch cable attached with a MPO one each end. For distance up to 10km, the 40GBASE-LR4 QSFP+ transceiver can be used with single-mode fiber with LC connectors. The picture above shows the transmission of 40GBASE-LR4 QSFP+ transceiver with LC connector over single-mode fiber.

For the 40G QSFP+ to 10G SFP+ cabling, fan out patch cable with MTP connector on one end and four LC duplex connectors on the other end is suggested (as shown in picture below).

MTP=8LC patch cords

In conclusion, three main factors must be considered are fiber optic cable type, fiber optic connector type and the switch port. In practical cabling, more should be considered. These three aspects are far from enough. However, FS can solve your problems with professional one-stop service including the cost-effective and reliable network designing and 40G products. You can contact sales@fs.com for more details.

Related article: Fiber Optic Cable Types, Pros & Cons, and Selection Guide