Category Archives: data center

What Is Layer 4 Switch and How Does It Work?

What’s Layer 4 Switch?

A Layer 4 switch, also known as a transport layer switch or content switch, operates on the transport layer (Layer 4) of the OSI (Open Systems Interconnection) model. This layer is responsible for end-to-end communication and data flow control between devices across a network.Here are key characteristics and functionalities of Layer 4 switches:

  • Packet Filtering: Layer 4 switches can make forwarding decisions based on information from the transport layer, including source and destination port numbers. This allows for more sophisticated filtering than traditional Layer 2 (Data Link Layer) or Layer 3 (Network Layer) switches.
  • Load Balancing: One of the significant features of Layer 4 switches is their ability to distribute network traffic across multiple servers or network paths. This load balancing helps optimize resource utilization, enhance performance, and ensure high availability of services.
  • Session Persistence: Layer 4 switches can maintain session persistence, ensuring that requests from the same client are consistently directed to the same server. This is crucial for applications that rely on continuous connections, such as e-commerce or real-time communication services.
  • Connection Tracking: Layer 4 switches can track the state of connections, helping to make intelligent routing decisions. This is particularly beneficial in scenarios where connections are established and maintained between a client and a server.
  • Quality of Service (QoS): Layer 4 switches can prioritize network traffic based on the type of service or application. This ensures that critical applications receive preferential treatment in terms of bandwidth and response time.
  • Security Features: Layer 4 switches often come with security features such as access control lists (ACLs) and the ability to perform deep packet inspection. These features contribute to the overall security of the network by allowing or denying traffic based on specific criteria.
  • High Performance: Layer 4 switches are designed for high-performance networking. They can efficiently handle a large number of simultaneous connections and provide low-latency communication between devices.

Layer 2 vs Layer 3 vs Layer 4 Switch

Layer 2 Switch:

Layer 2 switches operate at the Data Link Layer (Layer 2) and are primarily focused on local network connectivity. They make forwarding decisions based on MAC addresses in Ethernet frames, facilitating basic switching within the same broadcast domain. VLAN support allows for network segmentation.

However, Layer 2 switches lack traditional IP routing capabilities, making them suitable for scenarios where simple switching and VLAN segmentation meet the networking requirements.

Layer 3 Switch:

Operating at the Network Layer (Layer 3), Layer 3 switches combine switching and routing functionalities. They make forwarding decisions based on both MAC and IP addresses, supporting IP routing for communication between different IP subnets. With VLAN support, these switches are versatile in interconnecting multiple IP subnets within an organization.

Layer 3 switches can make decisions based on IP addresses and support dynamic routing protocols like OSPF and RIP, making them suitable for more complex network environments.

Layer 4 Switch:

Layer 4 switches operate at the Transport Layer (Layer 4), building on the capabilities of Layer 3 switches with advanced features. In addition to considering MAC and IP addresses, Layer 4 switches incorporate port numbers at the transport layer. This allows for the optimization of traffic flow, making them valuable for applications with high performance requirements.

Layer 4 switches support features such as load balancing, session persistence, and Quality of Service (QoS). They are often employed to enhance application performance, provide advanced traffic management, and ensure high availability in demanding network scenarios.

Summary:

In summary, Layer 2 switches focus on basic local connectivity and VLAN segmentation. Layer 3 switches, operating at a higher layer, bring IP routing capabilities and are suitable for interconnecting multiple IP subnets. Layer 4 switches, operating at the Transport Layer, further extend capabilities by optimizing traffic flow and offering advanced features like load balancing and enhanced QoS.

The choice between these switches depends on the specific networking requirements, ranging from simple local connectivity to more complex scenarios with advanced routing and application performance needs.


” Also Check – Layer 2, Layer 3 & Layer 4 Switch: What’s the Difference?

Layer 2 vs Layer 3 vs Layer 4 Switch: Key Parameters to Consider When Purchasing

To make an informed decision for your business, it’s essential to consider the key parameters between Layer 2, Layer 3, and Layer 4 switches when purchasing.

  1. Network Scope and Size:

When considering the purchase of switches, the size and scope of your network are critical factors. Layer 2 switches are well-suited for local network connectivity and smaller networks with straightforward topologies.

In contrast, Layer 3 switches come into play for larger networks with multiple subnets, offering essential routing capabilities between different LAN segments.

Layer 4 switches, with advanced traffic optimization features, are particularly beneficial in more intricate network environments where optimizing traffic flow is a priority.

  1. Functionality and Use Cases:

The functionality of the switch plays a pivotal role in meeting specific network needs. Layer 2 switches provide basic switching and VLAN support, making them suitable for scenarios requiring simple local connectivity and network segmentation.

Layer 3 switches, with combined switching and routing capabilities, excel in interconnecting multiple IP subnets and routing between VLANs.

Layer 4 switches take functionality a step further, offering advanced features such as load balancing, session persistence, and Quality of Service (QoS), making them indispensable for optimizing traffic flow and supporting complex use cases.

  1. Routing Capabilities:

Understanding the routing capabilities of each switch is crucial. Layer 2 switches lack traditional IP routing capabilities, focusing primarily on MAC address-based forwarding.

Layer 3 switches, on the other hand, support basic IP routing, allowing communication between different IP subnets.

Layer 4 switches, while typically not performing traditional IP routing, specialize in optimizing traffic flow at the transport layer, enhancing the efficiency of data transmission.

  1. Scalability and Cost:

The scalability of the switch is a key consideration, particularly as your network grows. Layer 2 switches may have limitations in larger networks, while Layer 3 switches scale well for interconnecting multiple subnets.

Layer 4 switch scalability depends on specific features and capabilities. Cost is another crucial factor, with Layer 2 switches generally being more cost-effective compared to Layer 3 and Layer 4 switches. The decision here involves balancing your budget constraints with the features required for optimal network performance.

  1. Security Features:

Security is paramount in any network. Layer 2 switches provide basic security features like port security. Layer 3 switches enhance security with the inclusion of access control lists (ACLs) and IP security features.

Layer 4 switches may offer additional security features, including deep packet inspection, providing a more robust defense against potential threats.

In conclusion, when purchasing switches, carefully weighing factors such as network scope, functionality, routing capabilities, scalability, cost, and security features ensures that the selected switch aligns with the specific requirements of your network, both in the present and in anticipation of future growth and complexities.

The Future of Layer 4 Switch

The future development of Layer 4 switches is expected to revolve around addressing the growing complexity of modern networks. Enhanced application performance, better support for cloud environments, advanced security features, and alignment with virtualization and SDN trends are likely to shape the evolution of Layer 4 switches, ensuring they remain pivotal components in optimizing and securing network infrastructures.


In conclusion, the decision between Layer 2, Layer 3, and Layer 4 switches is pivotal for businesses aiming to optimize their network infrastructure. Careful consideration of operational layers, routing capabilities, functionality, and use cases will guide you in selecting the switch that aligns with your specific needs. Whether focusing on basic connectivity, IP routing, or advanced traffic optimization, choosing the right switch is a critical step in ensuring a robust and efficient network for your business.


Related Article: Layer 2 vs Layer 3 Switch: Which One Do You Need? | FS Community

How Is 5G Pushing the 400G Network Transformation?

With the rapid technological disruption and the wholesale shift to digital, several organizations are now adopting 5G networks, thanks to the fast data transfer speeds and improved network reliability. The improved connectivity also means businesses can expand on their service delivery and even enhance user experiences, increasing market competitiveness and revenue generated.

Before we look at how 5G is driving the adoption of 400G transformation, let’s first understand what 5G and 400G are and how the two are related.

What is 5G?

5G is the latest wireless technology that delivers multi-Gbps peak data speeds and ultra-low latency. This technology marks a massive shift in communication with the potential to greatly transform how data is received and transferred. The increased reliability and a more consistent user experience also enable an array of new applications and use cases extending beyond network computing to include distributed computing.

And while the future of 5G is still being written, it’s already creating a wealth of opportunities for growth & innovation across industries. The fact that tech is constantly evolving and that no one knows exactly what will happen next is perhaps the fascinating aspect of 5G and its use cases. Whatever the future holds, one is likely certain: 5G will provide far more than just a speedier internet connection. It has the potential to disrupt businesses and change how customers engage and interact with products and services.

What is 400G?

400G or 400G Ethernet is the next generation of cloud infrastructure that offers a four-fold jump in max data-transfer speed from the standard maximum of 100G. This technology addresses the tremendous bandwidth demands on network infrastructure providers, partly due to the massive adoption of digital transformation initiatives.

Additionally, exponential data traffic growth driven by cloud storage, AI, and Machine Learning use cases has seen 400G become a key competitive advantage in the networking and communication world. Major data centers are also shifting to quicker, more scalable infrastructures to keep up with the ever-growing number of users, devices, and applications. Hence high-capacity connection is becoming quite critical.

How are 5G and 400G Related?

The 5G wireless technology, by default, offers greater speeds, reduced latencies, and increased data connection density. This makes it an attractive option for highly-demanding applications such as industrial IoT, smart cities, autonomous vehicles, VR, and AR. And while the 5G standard is theoretically powerful, its real-world use cases are only as good as the network architecture this wireless technology relies on.

The low-latency connections required between devices, data centers, and the cloud demands a reliable and scalable implementation of the edge-computing paradigms. This extends further to demand greater fiber densification at the edge and substantially higher data rates on the existing fiber networks. Luckily, 400G fills these networking gaps, allowing carriers, multiple-system operators (MSOs), and data center operators to streamline their operations to meet most of the 5G demands.

5G Use Cases Accelerating 400G transformation

As the demand for data-intensive services increases, organizations are beginning to see some business sense in investing in 5G and 400G technologies. Here are some of the major 5G applications driving 400G transformation.

High-Speed Video Streaming

The rapid adoption of 5G technology is expected to take the over-the-top viewing experience to a whole new level as demand for buffer-free video streaming, and high-quality content grows. Because video consumes the majority of mobile internet capacity today, the improved connectivity will give new opportunities for digital streaming companies. Video-on-demand (VOD) enthusiasts will also bid farewell to video buffering, thanks to the 5G network’s ultra-fast download speeds and super-low latency. Still, 400G Ethernet is required to ensure reliable power, efficiency, and density to support these applications.

Virtual Gaming

5G promises a more captivating future for gamers. The network’s speed enhances high-definition live streaming, and thanks to ultra-low latency, 5G gaming won’t be limited to high-end devices with a lot of processing power. In other words, high-graphics games can be displayed and controlled by a mobile device; however, processing, retrieval, and storage can all be done in the cloud.

Use cases such as low-latency Virtual Reality (VR) apps, which rely on fast feedback and near-real-time response times to give a more realistic experience, also benefit greatly from 5G. And as this wireless network becomes the standard, the quantity and sophistication of these applications are expected to peak. That is where 400G data centers and capabilities will play a critical role.

The Internet of Things (IoT)

Over the years, IoT has grown and become widely adopted across industries, from manufacturing and production to security and smart home deployments. Today, 5G and IoT are poised to allow applications that would have been unthinkable a few years ago. And while this ultra-fast wireless technology promises low latency and high network capacity to overcome the most significant barriers to IoT proliferation, the network infrastructure these applications rely on is a key determining factor. Taking 5G and IoT to the next level means solving the massive bandwidth demands while delivering high-end flexibility that gives devices near real-time ability to sense and respond.

400G Network

400G Ethernet as a Gateway to High-end Optical Networks

Continuous technological improvements and the increasing amount of data generated call for solid network infrastructures that support fast, reliable, and efficient data transfer and communication. Not long ago, 100G and 200G were considered sophisticated network upgrades, and things are getting even better.

Today, operators and service providers that were among the first to deploy 400G are already reaping big from their investments. Perhaps one of the most compelling features of 400G isn’t what it offers at the moment but rather its ability to accommodate further upgrades to 800G and beyond. What’s your take on 5G and 400G, or your progress in deploying these novel technologies?

Article Source: How Is 5G Pushing the 400G Network Transformation?

Related Articles:

Typical Scenarios for 400G Network: A Detailed Look into the Application Scenarios

What’s the Current and Future Trend of 400G Ethernet?

How 400G Has Transformed Data Centers

With the rapid technological adoption witnessed in various industries across the world, data centers are adapting on the fly to keep up with the rising client expectations. History is also pointing to a data center evolution characterized by an ever-increasing change in fiber density, bandwidth, and lane speeds.

Data centers are shifting from 100G to 400G technologies in a bid to create more powerful networks that offer enhanced experiences to clients. Some of the factors pushing for 400G deployments include recent advancements in disruptive technologies such as AI, 5G, and cloud computing.

Today, forward-looking data centers that want to maximize cost while ensuring high-end compatibility and convenience have made 400G Ethernet a priority. Below, we have discussed the evolution of data centers, the popular 400G form factors, and what to expect in the data center switching market as technology continues to improve.

Evolution of Data Centers

The concept of data centers dates back to the 1940s, when the world’s first programmable computer, the Electronic Numerical Integrator and Computer, or ENIAC, was the apex of computational technology. The latter was primarily used by the US army to compute artillery fire during the Second World War. It was complex to maintain and operate and was only operated in a particular environment.

This saw the development of the first data centers centered on intelligence and secrecy. Ideally, a data center would have a single door and no windows. And besides the hundreds of feet of wiring and vacuum tubes, huge vents and fans were required for cooling. Refer to our data center evolution infographic to learn more about the rise of modern data centers and how technology has played a huge role in shaping the end-user experience.data center evolution

The Limits of Ordinary Data Centers

Some of the notable players driving the data center evolution are CPU design companies like Intel and AMD. The two have been advancing processor technologies, and both boost exceptional features that can support any workload.

And while most of these data center processors are reliable and optimized for several applications, they aren’t engineered for the specialized workloads that are coming up like big data analytics, machine learning, and artificial intelligence.

How 400G Has Transformed Data Centers

The move to 400 Gbps drastically transforms how data centers and data center interconnect (DCI) networks are engineered and built. This shift to 400G connections is more of a speculative and highly-dynamic game between the client and networking side.

Currently, two multisource agreements compete for the top spot as a form-factor of choice among consumers in the rapidly evolving 400G market. The two technologies are QSFP-DD and OSFP optical/pluggable transceivers.

OSFP vs. QSFP-DD

QSFP-DD is the most preferred 400G optical form factor on the client-side, thanks to the various reach options available. The emergence of the Optical Internetworking Forum’s 400ZR and the trend toward combining switching and transmission in one box are the two factors driving the network side. Here, the choice of form factors narrows down to power and mechanics.

The OSFP being a bigger module, provides lots of useful space for DWDM components, plus it features heat dissipation capabilities up to 15W of power. When putting coherent capabilities into a small form factor, power is critical. This gives OSFP a competitive advantage on the network side.

And despite the OSFP’s power, space, and enhanced signal integrity performance, it’s not compatible with QSFP28 plugs. Additionally, its technology doesn’t have the 100Gbps version, so it cannot provide an efficient transition from legacy modules. This is another reason it has not been widely adopted on the client side.

However, the QSFP-DD is compatible with QSFP28 and QSFP plugs and has seen a lot of support in the market. The only challenge is its low power dissipation, often capped at 12 W. This makes it challenging to efficiently handle a coherent ASIC (application-specific integrated circuit) and keep it cool for an extended period.

The switch to 400GE data centers is also fueled by the server’s adoption of 25GE/50GE interfaces to meet the ever-growing demand for high-speed storage access and a vast amount of data processing.OSFP vs. QSFP-DD

The Future of 400G Data Center Switches

Cloud service provider companies such as Amazon, Facebook, and Microsoft are still deploying 100G to reduce costs. According to a report by Dell’Oro Group, 100G is expected to peak in the next two years. But despite 100G dominating the market now, 400G shipments are expected to surpass 15M million switch ports by 2023.

In 2018, the first batch of 400G switch systems based on 12.8 Tbps chips was released. Google, which then was the only cloud service provider, was among the earliest companies to get into the market. Fast-forward, other cloud service providers have entered the market helping fuel the transformation even further. Today, cloud service companies make a big chunk of 400G customers, but service providers are expected to be next in line.

Choosing a Data Center Switch

Data center switches are available in a range of form factors, designs, and switching capabilities. Depending on your unique use cases, you want to choose a reliable data center switch that provides high-end flexibility and is built for the environment in which they are deployed. Some of the critical factors to consider during the selection process are infrastructure scalability and ease of programmability. A good data center switch is power efficient with reliable cooling and should allow for easy customization and integration with automated tools and systems. Here is an article about Data Center Switch Wiki, Usage and Buying Tips.

Article Source: How 400G Has Transformed Data Centers

Related Articles:

What’s the Current and Future Trend of 400G Ethernet?

400ZR: Enable 400G for Next-Generation DCI

Silicon Photonics: Next Revolution for 400G Data Center

400G

With the explosion of 5G applications and cloud services, traditional technologies are facing fundamental limits of power consumption and transmission capacity, which drives the continual development of optical and silicon technology. Silicon photonics is an evolutionary technology enabling major improvements in density, performance and economics that is required to enable 400G data center applications and drives the next-generation optical communication networks. What is silicon photonics? How does it promote the revolution of 400G applications in data centers? Please keep reading the following contents to find out.

What Is Silicon Photonics Technology?

Silicon photonics (SiPh) is a material platform from which photonic integrated circuits (PICs) can be made. It uses silicon as the main fabrication element. PICs consume less power and generate less heat than conventional electronic circuits, offering the promise of energy-efficient bandwidth scaling.

It drives the miniaturization and integration of complex optical subsystems into silicon photonics chips, dramatically improving performance, footprint, and power efficiency.

Conventional Optics vs Silicon Photonics Optics

Here is a Technology Comparison Chart between Conventional Optics vs Silicon Photonics Optics, taking QSFPDD DR4 400G module and QDD DR4 400G Si for example:

The difference between a 400GBASE-DR4 QSFP-DD PAM4 optical transceiver module and a silicon photonic one just lies in: 400G silicon photonic chips — breaking the bottleneck of mega-scale data exchange, showing great advantages in low power consumption, small footprint, relatively low cost, easiness for large volume integration, etc.

Silicon photonic integrated circuits provide an ideal solution to realize the monolithic integration of photonic chips and electronic chips. Adopting silicon photonic design, a QDD-DR4-400G-Si module combines high-density & low-consumption, which largely reduces the cost of optical modules, thereby saving data center construction and operating expenses.

Why Adopt Silicon Photonics in Data Centers?

To Solve I/O Bottlenecks

The world’s growing data demand has caused bandwidths and computing power resources in data centers to be used up. Chips have to become faster when facing the growing demand for data consumption, which can process information faster than the signal can be transmitted in and out. That is to say, chips are becoming faster, but the optical signal (coming from the fiber) must still be converted to an electronic signal to communicate with the chip sitting on a board deep in the data center. And since the electrical signal still needs to travel some distance from the optical transceiver, where it was converted from light, to the processing and routing electronics — we’ve reached a point where the chip can process information faster than the electrical signal can get in and out of it.

To Reduce Power Consumption

Heating and power dissipation are enormous challenges for the computing industry. Power consumption will directly translate to heat. Power consumption causes heat, so what causes power dissipation? Mainly, data transmissions. It’s estimated that data centers have consumed 200TWh each year — more than the national energy consumption of some countries. Thus, some of the world’s largest Data Centers, including those of Amazon, Google, and Microsoft are located in Alaska and similar-climate countries due to the cold weather.

To Save Operation Budget

At present, a typical ultra-large data center has more than 100,000 servers and over 50,000 switches. The connection between them requires more than 1 million optical modules with around US$150 million-US$250 million, which accounts for 60% of the cost of the data center network, exceeding the sum of equipment such as switches, NICs, and cables. The high cost forces the industry to reduce the unit price of optical modules through technological upgrades. The introduction of fiber optic modules adopting Silicon Photonics technology is expected to solve this problem.

Silicon Photonics Applications in Communication

Silicon photonics has proven to be a compelling platform for enabling next-generation coherent optical communications and intra-data center interconnects. This technology can support a wide range of applications, from short-reach interconnects to long-haul communications, making a great contribution to next-generation networks.

  • 100G/400G Datacom: data centers and campus applications (to 10km)
  • Telecom: metro and long-haul applications (to 100 and 400 km)
  • Ultra short-reach optical interconnects and switches within routers, computers, HPC
  • Functional passive optical elements including AWGs, optical filters, couplers, and splitters
  • 400G transceiver products including embedded 400G optical modules400G DAC Breakout cables, transmitters/receivers, active optical cables (AOCs), as well as 400G DACs.

Now & Future of Silicon Photonics

Yole predicted that the silicon optical module market would grow from approximately US$455 million in 2018 to around US$4 billion in 2024 at a CAGR of 44.5%. According to Lightcounting, the overall data communication high-speed optical module market will reach US$6.5 billion by 2024, and silicon optical modules will account for 60% (3.3% in 20 years).

Intel, as one of the leading Silicon photonics companies, has a 60% market share in silicon photonic transceivers for datacom. Indeed, Intel has already shipped more than 3 million units of its 100G pluggable transceivers in just a few short years, and is continuing to expand its Silicon Photonics’ product offerings. And Cisco acquired Accacia for US$2.6 billion and Luxtera for US$660 million. Other companies like Inphi and NeoPhotonics are proposing silicon photonic transceivers with strong technologies.

Original Source: Silicon Photonics: Next Revolution for 400G Data Center

400G Optics in Hyperscale Data Centers

Since their advent, data centers have been striving hard to address the rising bandwidth requirements. A look at the stats reveals that 3.04 Exabytes of data is being generated on a daily basis. Whenever a hyperscale data center is taken into consideration, the bandwidth requirements are massive as the relevant applications require a preemptive approach due to their scalable nature. As the introduction of 400G data centers has taken the data transfer speed to a whole new level, it has brought significant convenience in addressing various areas of concern. In this article, we will dig a little deeper and try to answer the following questions:

  • What are the driving factors of 400G development?
  • What are the reasons behind the use of 400G optics in hyperscale data centers?
  • What are the trends in 400G devices in large-scale data centers?

What Are the Driving Factors For 400G Development?

The driving factors for 400G development are segregated into video streaming services and video conferencing services. These services require pretty high data transfer speeds in order to function smoothly across the globe.

Video Streaming Services

Video streaming services were already taking a toll on the bandwidth requirements. That, combined with the COVID-19 pandemic, forced a large population to stay and work from home. This automatically increased the usage of video streaming platforms. A look at the stats reveals that a medium-quality stream on Netflix consumes 0.8 GB per hour. See that in relation to over 209 million subscribers. As the traveling costs came down, the savings went to improved quality streams on Netflix like HD and 4K. What stood at 0.8 GB per hour rose to 3 and 7 GB per hour. This evolved the need for 400G development.

Video Conferencing Services

As COVID-19 made working from home the new norm, video conferencing services also saw a major boost. Till 2021, 20.56 million people have been reported to be working from home in the US alone. As video conferencing took center stage, Zoom, which consumes 500 MB per hour, saw a huge increase in its user base. This also puts great pressure on the data transfer needs.

What Makes 400G Optics the Ideal Choice For Hyperscale Data Centers?

Significant Decrease in Energy and Carbon Footprint

To put it simply, 400G raises the data transfer speed four times. 400G reduces the cost of 100G ports as breakouts when comparing a 4 x 100G solution to facilitate 400GbE with a single 400G solution to do the same. A single node at the output minimizes the risk of failures as well as lower the energy requirement. This brings down the ESG footprint that has become a KPI for the organizations going forward.

Reduced Operational Cost

As mentioned earlier, a 400G solution requires a single 400G port, whereas addressing the same requirement via a 100G solution requires four 100G ports. On a router, four ports cost way more than a single port that can facilitate rapid data transfer. The same is the case with power. Combined together, these two bring the operational cost down to a considerable extent.400G Optics

Trends of 400G Optics in Large-Scale Data Centers—Quick Adoption

The introduction of 400G solution in large-scale data centers has reshaped the entire sector. This is due to a humongous increase in the data transfer speeds. According to research, 400G is expected to replace 100G and 200G deployments way faster than its predecessors. Since its introduction, more and more vendors are upgrading to network devices that support 400G. The following image truly depicts the technology adoption rate.Trends of 400G Optics

Challenges Ahead

Lack of Advancement in the 400G Optical Transceivers sector

Although the shift towards such network devices is rapid, there are a number of implementation challenges. This is because it is not only the devices that need to be upgraded but also the infrastructure. Vendors are trying to upgrade them in order to stay ahead of the curve but the cost of the development and maturity of optical transceivers is not at the expected benchmark. The same is the case with their cost and reliability. As optical transceivers are a critical element, this comes as a major challenge in the deployment of 400G solutions.

Latency Measurement

In addition, the introduction of this solution has also made network testing and monitoring more important than ever. Latency measurement has always been a key indicator when evaluating performance. Data throughput combined with jitter and frame loss also comes as a major concern in this regard.

Investment in Network Layers

Lastly, the creation of a plug-and-play environment for this solution also needs to be more realistic. This will require a greater investment in the physical, higher level, and network-IP components layers.

Conclusion

Rapid technological advancements have led to concepts like the Internet of Things. These implementations require greater data transfer speeds. That, combined with the world going to remote work, has exponentially increased the traffic. Hyperscale data centers were already feeling the pressure and the introduction of 400G data centers is a step in the right direction. It is a preemptive approach to address the growing global population and the increasing number of internet users.

Article Source: 400G Optics in Hyperscale Data Centers

Related Articles:

How Many 400G Transceiver Types Are in the Market?

Global Optical Transceiver Market: Striding to High-Speed 400G Transceivers